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Capitulo 1

A Matematica esta em tudo

Alguns exemplos:

1) Dobrando as dimensdes lineares de uma figura plana, a drea quadru-
plica.

7777777777707
700000050505050007%
200000000000050507
700000050505050007
200000000000050007
700000050505000007
b 177772777772777777
707 70000005057
000000050000000507
700000050505050007
Ay 700005050505050507
200505050000200000) 200000050505050007
050505050000505077) 700005050505000507
20000505050000077 200000000005050507
0505050500005050770) 700000050505000007
200005050505200000) 200000000000000007
505000000000050577 700000050505000007
200000050500500070) 000000000000050507 2
100000000052270577 2 2 b A _4b
0505050520005050570) ¢ 2 =
250505050000200000)
ey
200505050500200000)
050505050000505077)
200005050500200000)
2505050500002050770)
200000050500200000)
2050700005050500207
2 $0000000000050000707
1 — Voo s702770777777777

2b

OBS: Multiplicando cada dimensao linear por n, a area passara a ser
n vezes a original.

2) As intensidades luminosa e sonora de fontes pontuais, caem com o
quadrado da distancia a fonte.

Energia

A grandeza intensidade (1) é definida como: —~=*° Em unidades do

Area
Watt

Sistema Internacional de Medidas temos: I = 5
m
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Al=axa=a’

As = 2a X 2a = 4a?

A intensidade da luz na imagem pelo microscépio éptico, cai com o
quadrado do aumento, para uma mesma fonte, onde se mantém fixa a
intensidade da fonte (consequéncia do exemplo 2, acima).

I x %; onde M representa o aumento.

Frequéncias sonoras de ressonancia no meato acustico externo da ore-
lha. No desenho, esta representada esquematicamente a orelha externa,
aberta no pavilhao da orelha e fechada na membrana timpanica. Entre
as duas estruturas, o meato acustico externo, cujo comprimento é de
cerca de 2,5 cm.

Membrana
timpanica

$

Pavilhao
auditivo

Portanto, para efeitos de ressonancia sonora, o meato actstico externo,
é um tubo aberto de um lado, e fechado no outro. Entao, o maior
comprimento de onda (A) de ressonancia neste tubo, terd um valor
quatro vezes maior do que o comprimento do tubo.

membrana

L\ e
abertura / 4 timpanica




Considerando a velocidade do som no ar v = 340 m/s e o comprimento
de onda A =4 x 2,5 =10 cm = 0,1 m corresponde ao som mais grave
de ressonancia no tubo, podemos calcular a frequéncia de ressonancia
no meato acustico externo, pois:

v=AXf = 340m/s =0,lm x f = [~ 3400 Hz

Verifica-se que esta frequéncia corresponde a frequéncia da fala, o que
quer dizer que o meato acustico externo amplifica frequéncias que che-
gam a orelha correspondentes as da fala!

Aumento maximo do microscopio éptico. O olho humano é capaz de
discernir dois pontos (em alto contraste) distando 0,2 mm entre si,
quando observados em um anteparo a 25 cm do olho.

Ja o microscépio Optico, em razao do fenomeno da difracao da luz
no orificio da lente objetiva, distingue dois pontos luminosos distando

entre si 0,2 pm (micrometros). Qual o aumento méximo proporcionado
pelo M.O.?

Solucao:
0,2 0,2 x 10
_ emm D2 X P 000

02um  02um

“Mil vezes de aumento”.

Numeros “f” de objetivas fotograficas. Estes nimeros determinam a
abertura da lente, em funcao do diametro do diafragma, o que deter-
minard a intensidade da luz no chip da camara fotografica.

Ex.: Com o diafragma fechado de forma a gerar uma abertura de 5 mm
de diametro, para uma objetiva de 110 mm de distancia focal, temos:
S 100 mm
2 22

Sequéncia de “ntmeros f” para uma lente objetiva é a seguinte:

U S N BN
847568’

Numero “f”: =5 mm

'8 1°16° 22

Se fizermos os calculos das razoes entre os denominadores consecutivos
das diversas fracoes acima, encontraremos:

28 4 56 8 11 16 22
N & N— xR — V2
8 11 16 V2

-~
~ ~ ~

2 28 4 5,

D
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Isto significa que variando a abertura em um passo no sentido horario,
ou anti-horéario teremos a area da entrada de luz dividida por 2 ou
multiplicada por 2, considerando que a abertura do diafragma da lente
é circular, e a 4rea do circulo é 47R?, onde R varia, em relacio aos
vizinhos, por um fator v/2.

Escala vernier

Pierre Vernier foi um matemaético francés nascido no final do século
XVI, inventor de instrumentos, dentre os quais, aquele utilizado para
medidas de objetos ou proje¢oes métricas, que leva seu nome: a escala
vernier. Esta escala é adaptada em paquimetros. Como exemplo (figura
abaixo), representamos uma situagdo em que o paquimetro permite
medidas em até décimos de milimetro:

Neste desenho esquematico, a escala superior esta calibrada em milimetros
(por exemplo). A escala inferior, apresenta 10 partes igualmente espagadas,
para um comprimento correspondente a 9 partes, na escala original.
Isto significa que, deslocando lentamente a escala inferior para a direita,
suas linhas divisdrias irao coincidir com as linhas acima, na ordem 1, 2,

3, ... até que o zero da escala inferior coincida com o “1” da superior, o
que simultaneamente ocorrera para o “10” da inferior, relativamente ao
“10” da superior. Teremos 10 pontos de coincidéncias em sequéncia,
para cada posicao numeérica da escala superior, mostrando que, com

a escala vernier apresentada, nosso sistema adquire a possibilidade de
medir de 0,1 em 0,1 unidades da escala original, o que aumenta nossa
precisao em 10 vezes.

A figura ... representa um paquimetro, com um corpo de referéncia,
onde sao gravadas as escalas em centimetro e polegada. Na parte me-
nor, movel estao as escalas vernier, para fragoes de milimetros (abaixo)
e fragoes de polegadas (acima).



Exemplo:

Seja medir o objeto azul com um paquimetro. Na representacao do
instrumento (figura abaixo) a escala superior é fixa, enquanto a infe-
rior se desloca para permitir a medida da dimensao linear do objeto.
Considerando a escala de referéncia em milimetros, verificamos que o
objeto mede 5 mm + 0,5 mm (a escala inferior coincide com a superior
na quinta marcagao). Portanto, o comprimento vale 5,5 mm.

Proporcao Aurea

Proporcao aurea, razao aurea, nimero de ouro, nimero aureo, nimero
magico, seccao aurea, proporc¢ao de ouro, tem sua origem na Grécia,
antes mesmo do tempo do matematico Euclides, que a descreveu na
proposicao: dividir um segmento de reta em média e extrema razao.

Diz-se que o ponto C divide o segmento AB em média e extrema razao,
se a razao entre o comprimento do maior segmento e o do menor dos
segmentos produzidos for igual a razao entre o segmento original e o
maior segmento produzido. Esta afirmagao é equivalente a dizer que,
na figura abaixo, o comprimento dos segmentos AB, AC e CB, isto
é, “a+ 0", “a” e “D", formam uma Progressao Geométrica. Entao,
podemos escrever:

a a+b
b a
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A C B

a+b

b
Consideremos a igualdade % _ 4 + . Se dividirmos ambos 0s membros
a

a
do segundo termo desta igualdade por b, e fazendo 7= x, teremos a

expressao:

z+1 . -
, a qual corresponde & equacdo do segundo grau z? = z + 1

xr =
3 _ - . 5.
— 2 —x — 1 =0, cujas raizes sao:

IR ESVE]
2

T

Podemos separar as duas raizes como:

V5+1

1’1:+ 9
T ——\/5_1
T 2

Considerando a raiz positiva, pois a raiz negativa corresponde a um
)
ponto C exterior ao segmento AB, temos:

a V5+1
b 2

= 1,61803398875 . ..

Tr =

A este nuimero, indicaremos pela letra grega .

A proporcao que leva ao niimero ¢, é associada a um senso de harmonia
e beleza tanto nas artes graficas, como em alguns monumentos arqui-
tetonicos histoéricos e na natureza, como no padrao de organizacao da
formagao de sementes em flores, em caracois, conchas marinhas, etc.
Entretanto, nao ha comprovacao cientifica de que a proporcao aurea
seja um requisito para tornar objetos agradaveis, esteticamente.

Alguns exemplos de expressoes matematicas e figuras geométricas que
levam ao ntimero ¢ sao dados abaixo:



1)

Sequéncia de Fibonacci.
No século XVIII, o matematico italiano Leonardo Fibonacci ela-
borou uma sequéncia numérica infinita que se tornou bastante
popular.
Comecando pelo numero 1, cada proximo termo da sequéncia, é
formado pela soma de cada numeral com o niimero que o antecede.
Os primeiros ntimeros dessa sequéncia sao os seguintes: 1, 1, 2,
3, 5,8, 13, 21, 34, 55, 89 ... Verifique a obtencao de alguns dos
termos: 1 +1=2;2+1=3; 3+2=5; etc.
O limite das razoes entre cada termo e o antecessor aproxima-se
do ntimero Phi (¢), como mostrado abaixo:

2 5 8 13

1

3
—=15; -=1666...; -=16...; —=1,625...
2 773 ) ’ ) ’ ) )

5

Y
Série de fracoes sucessivas

A aproximagao do nimero aureo  também é obtida quando apro-
ximamos uma representacao da série de fragoes usando ntimeros
“1”, como mostrado abaixo

" 1
a/ _—
1
b++—1
C
d+e
1 1 3
1,1=14+4-=2; 1,1,1 =1+ 1:1—|—5:1+—:1,5,
1—0—5 3 2
1 1 2 5
1,1,1,1:1+—1:1—1—3:1—0——:—:1,666; etc...

3) Figuras geométricas:

- Proporg¢ao aurea no pentagono regular

o

][R
I
_e_
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- Proporgoes aureas no pentagrama

- Combinando o pentagrama e o pentagono regular (considerando
as mesmas letras do desenho anterior).

O matematico canadense W. W. Sawyer em seu livro “A Prelude to
Mathematics - Dover Publications, Inc. New York, 1982” afirma:

“A Matematica é a classificacao e estudo de todos os possiveis padroes. . .
Padrao é para ser entendido num sentido bastante amplo, de tal forma a
cobrir quase qualquer tipo de regularidade que possa ser reconhecida pela
mente: A vida, e certamente a vida intelectual, s6 é possivel porque ha cer-
tas regularidades no mundo.”

Padroes elementares sao encontrados em tabelas de multiplicacao.



Multiplos de 2x e 5x sao faceis de identificar, pois na tabela de 2x os
digitos finais sao pares e na de 5x sao “0” ou “5”.

Algumas outras regularidades s@o mais dificeis de identificar, como por
exemplo as da tabela 7x. Veja:

Os digitos finais de 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, sao:

7,4, 1,8 5, 2,9, 6, 3, 0, e as diferencas entre os vizinhos, a partir da
esquerda, sao:

-3, =3, +7, =3, =3, +7, =3, —3, —3, o que mostra um ritmo aparente.
Além disso, os digitos finais da tabela de 7x, lidos de tras para frente, sao
aqueles da tabela de 3x!

Verifique: 3 x0=0,3x1=3,3x2=6,3x3=9,...,3x9=27T.
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Capitulo 2

Relacoes e Funcoes

2.1 Produto Cartesiano

Ax B={(z,y)lr € Aey e B}
A=1{1,2,3} e B={24}

AxB= {<1’2); (174); (272); (2’4); (372); (374)}
BxA= {<2’1); (272)§ (273); (4’1); (47 2); (47 3)}
OBS:

a) Ax B#ZBxA
b) AxB=0 <= A=0ouB=90

c) AXxB#0) <= A#De B+

2.1.1 Relacoes Binarias

Qualquer subconjunto de A x B.
Exemplos:
a) S={(z,y) € Ax Blz <y} ={(1,2);(1,4);(2,4); (3,4)}
b) E={(z,y) € Ax B|y =3z} =0

11
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Graficos de flechas
a)

2.1.2 Dominio e Imagem

O conjunto dos elementos de A dos quais sai alguma flecha é o dominio de
S: D(S).

O conjunto dos elementos de B nos quais chega alguma flecha de S é a
imagem de S: Im(S).

Im(S)

~

Nos exemplos anteriores:
D(S)=A4 Im(S) =B
D(S)=10 Im(S) =0
D(S)Cc Aelm(S) C B
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2.1.3 Relacgoes Inversas

Se S ={(z,y) € Ax B|lz*y} arelacio S™' = {(x,y) € B x A|y xx}
Nos exemplos dados:
S7H={(2,1); (4,1); (4,2); (4,3)} = {(2,y) € Bx Aly <}

E7 =0={(z,y) € Bx Alz =3y}

B

2.2 Geometria Analitica Plana

2.2.1 Foérmula da distancia entre dois pontos

Sejam Pi(x1,y1) e Py(xo,ys) dois pontos do R?

|PLPs| = /(22 — 1) + (Yo — 11)?

Y

A

~

Exemplo: Calcule a distancia entre os pontos Pj(—4, —3) e Py(2,7).

|PLPy| = /]2 — (—4)]2 + [T — (—3)]2 = v/36 + 100 = 2V/34
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2.2.2 Equacao da reta

E uma equagao do 1° grau com duas variaveis.

Seja a reta L que faz angulo a com o eixo dos x.

—b
m=tga=tt =
xr

Equacao geral:

Ar+ By+C =0

By=—-Ax-C
T
vE BT P

Exemplo: Dé o gréfico da relacao {(z,y) € R?* |y = 2z — 3}.
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Yy
x|y
0-3
211 T (2,1)
T 0 T 2 T /'T

/ (0,-3)

2.2.3 Equacgao do circulo (circunferéncia)

Lugar geométrico dos pontos de plano que equidistam de um ponto fixo
denominado de centro.

)
P(z,y)
(O’ k) 1T k‘)
0 ho) °

{(z,y) ER*|/(z —h)?+ (y — k)2 =r}
{(z,y) eR*|(x = h)* + (y — k)* =}

Exemplo: Construa o gréafico de {(x,y) € R*|z? + ¢y* = 4}
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Y

A

(0,2)

\
(4

<_270> 0 (270) v

2.3 Exercicios

1. Construa o grafico da relagdo R = {(z,y) € R* |2z — 3y < 6}.
R= {(x,y) E]Rz‘y> %x—Z}

Logo, (z1,y1) € R & Py estd acima do grafico de y = 2z — 2.

Y

2. Construa o grafico cartesiano das relagoes:

a) R={(z,y) e R*|2*+y* <9 e x+2y >4}
R = Ry N Ry, onde

Ry = {(z,y) € R*|2® +¢* < 9}
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e
2 9 1
Ry ={(z,y) e R*|x+2y >4} =< (z,y) e R* |y > —§$+2
Y
2 2 _
b) Zz +y -
Yy—r=
{(—l—ﬁ 1—ﬁ> .(—1+ﬁ 1+ﬁ>}
2 ’ 2 ) 2 y T 9
Y
(0,2)
- >\,<*142r\ﬁ71+2\ﬁ)
(—2,0) ,// e N (2,0)
Tq// 0 //‘ ’ Xz
(flfﬁ/ﬂ) P
2 0 2 -
) (07_2)

3. Dados os conjuntos A = {x € R|1 < 2 < 4} e B = {2}, construa o
grafico cartesiano de A x B.

Ax B
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4. Dados os conjuntos A ={z e R|1 <z <4}eB={yeR|2<y <4},
construa os graficos cartesianos de A x B e B x A.

Y Y
4+ 4+
2Ak
lAk
T e 5 e

5. Se A={1,2,5,8} e B={0, 2, 3}, quais sao os elementos da relagao
R={(x,y) € Ax B|xz <y} ? Construa o gréfico de flechas.

R={(1,2); (1,3); (2,3)}

6. Sendo A ={z e R|1 <z <3}eB={yecR|2<y <6}, construa o
grafico cartesiano da relacao R = {(x,y) € A x B|y = 2x}.

7. S¢e A=4{0,1,2,5} e B={-2,-1,0,1, 2}, quais os elementos de
R={(z,y) e AxBly=+vVx—1}7?

R={(1,0); (2,-1); (2,1); (5, —2); (5,2)}



2.3. EXERCICIOS

Gl — O
AN

8. Represente num grafico cartesiano:
a) R? d) R. xRy g) {—2} x[0,7

b) R, x R, e) [0,2] x [~1,1 h) 72

¢) R x R_ f) R x {3} i) Z,x]— 00,0

aR2 bR+XR+

AN AN
0007002070020707007K0070000700007000. AR
A s 70500005005050077
1000000005050500000800005050500050507: 70000505050505057.
s s 70500505005000050.
1000000000000005000800000500005000007 00500005000000000:
A s 70500505005050050.
A s 00500005005000007:
1000000000500000000800000500005000007. 70500505005050050.
A s 70500005000050007
1000000000000000000800000000005000007. 70500505005000057.
A s 70500005000050007
1000000000000000000800000500000000007. 70000005025000007.
100000000050000000080000050000007 . 50500505005000057.
1000000005050000000800005050500050507: 70000505050505077
s s 50500505005050057.
100000500500005007 20505005050057: 70500000007 :
AN AN AN
S ey ?
1000000000000 00508 0000000000000050!

1000000000000000000800000000005000007.
1000050500500000090800000500005000057:
o s
s s
1000000005050505000800000050505050577
s s
1000000000000000000800000000005000007:
D s
A s
1000000000500000000800000500005000057.
A s
1000000000500000000800000000000000007
s s
1000000000000000000800000500005000007.
105007 700005008000007 2050500,
1000000005050000000800005050505050507:
1000000000000000000800000000000000000:
A
1000500005005050057
1000500505005050050
1000500005000050000
1000500005005050050
1000500005000050057
1000500005000050000
1000500005005050057
1000500005000050000
1000500005005050050
1000500005000050000
1000500005005050050
1000500005000050007
1000500505005050050
1000500005000050007
1000500505005050050
1000500005000050057
\ 1000500505000000000 \
777777777777777700 L4
705005050050000000 @
00500005005050007:

7
27777777
7
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f) R x {3}

e) [0,2] x [-1,1]

A

h) 72

g) {2} x[0,7]

T

4

4

3

2

TT T T T T e T T e T~~~

14
SN S W S S U S S G

3
T reY oot rorT o

12
i e T e B S S e i Y

~3+2-1.0[1

it Bt Sl ol Baiiel it Senin Sl St Sl

—4

1) Z, x]— 00, 0]

—-4-3-2-1 0|1
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2.4 Funcoes

Conceito: Quando uma relacao F' do A em B é tal que cada elemento possui
uma e somente uma imagem em B, dizemos que F' é uma funcao de A em

B.

S nao é fungao F é funcao

2.4.1 Notacao

Exemplos:
[iZy =R f(z) =22
Entao
f(1) =2, f(3) =6,
Notar:
f=A(2,y) € Zy xRy = 2z}
Ly f R
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Yy
£ I B
|
20
RO
ol 1 3 5 4 e
Exercicio:

Quais das relacoes abaixo representa funcgoes?

2)

b)

A R B
a e (X
b > 3
c >
d )

OBS: (z,y) € f e (x1,y1) € f = = # x; para ser funcao.

Y

/KP (—\ Nao ¢é funcao!
/\ 3
x

\
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2.4.2 Dominio e Imagem

Mesma interpretacao que nas Relacoes Binarias.

Exemplo:

b) g [1,2] =R, g(z) =2
c) h : R— R, hiz)=2a?
Dy=R  Im(h) = [0, 00

2.4.3 Classificacao das Funcoes

Seja f uma fungao de A em B.

a) Sobrejetiva se Im(f) = B
Ex.: f:R=>R, f(z)=22+1
o Im(f) = R = Sobrejetiva

g: L2 =R, g(z)=2
Im(g) = [1,2] = Nao é sobrejetiva

b) Injetiva se e somente se:
V(zq,x9,...) com x1,Zs,... € A; 11 # 29 = f(x1) # f(22)
Ou seja, elementos distintos tém imagens distintas.
Ex.:
f:R =R, f(z) = 2z+1 Einjetiva, pois 2, # 1o = 2x1+1 # 229+2

h:R — R, hix) = 2* Nao é injetiva, pois 71 # zo =& 27 # 23,
(=

¢) Uma fungao sobrejetiva e injetiva é chamada bijetiva. Entao em todo
elemento de B chega apenas uma flecha de f.

2.4.4 Funcoes Reais

Quando A e B sao subconjuntos de R.
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Funcgao Constante

Y
R AN
{c}
C
0 &
Funcgao Idéntica
Y
flz)=2 ou y=u=
D;=R, Im(f)=R 0 ?
Funcao Binoémio do 1° Grau
Y
b
flz)=ax+b,a#0 b
D;=R, Im(f)=R 0 ?

Sinal da fungao binomio do 1° grau

rorer(eet) Q)
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0
—b sinal oposto ao de a |

sinal de a

Raiz 21 = —
a I

T
Exemplos:

1. Estude a variacao do sinal de y = 3z — 5.

5
Raiz x = =
iz 3 =g
2. Estude a variacao do sinal de y = —x + 4.
Raiz z =4

3. Resolva 3z +4 > 0.

0

— -
5
3

_|_ —
4

{xeR|x>—L—l} ;’;

3

4. Resolva i—fg <0

r+3=0 = z=-3

Qi

Resposta {r e R| —3 <z <2}

1+z 1—x
5. Resolva 522 < o=

1+ 1—x<
2—x 24z

1+2)2+2)—(1—2)(2—1)

(2—x)(2+x)

<0

T+ 3
T —2

quociente
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2+x+2z+2%) - (2—2— 21+ 2%

<0

(2—x)(2+x)

(2+ 3z +2%) — (2— 3z + 2?)

<0

T
2—x
24z

(2—x)(2+x)
6x
<0
(2—x)(2+x)
x
<0
(2—1z)(2+x)
o+ -
+ |+ |+ ] -
- |+ |+ | +
I R R
-2 0 2

Resposta: {r e R| —2 <2 <0 ou z > 2}.

Fungao Trinomio do 2° Grau
fl@)=az* +bx+c,a##0
D; =R
Im(f) = [-£,00] quando a >0
Im(f) = |—o00,—£] quando a <0
OBS: Equacao
az® +br+c=0

Raizes

x:—b:i:\/bz—élac A
2a

Soma )
S =_

a

Produto c
pP==-

a

(2—9;)E(2+;E)
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Estudo do sinal de y = ax?® + bz + ¢ (pardbola)
y=a|r +—-r+ —
a a

2+b +b2 bQ+c
=qlz°+ -2+ —— — +—
y a 4a?2  4a?  «a

n b\? B — 4ac
v 2a 4a?

|

2
y=a m+£ A . A =b>—dac
2a

T —00 —% +00

x+% —00 A 0 A 400

(x—i—%) +00 ~ 0 A +o00

a >0, a(x—i—%)Q 400 ~ 0 A +00
a <0, a(x+%)2 —00 A 0 ~ —00
a >0, y:a(x+%)2—4% +00 > —ﬁ A 400
a <0, y:a(x+%)2—4% —00 A —ﬁ S —00

CONCLUSOES

A

1) Se a > 0, y decresce até — ¢ e a seguir cresce.
a

_b _A
2a’ 4a

Im(f) = [—ﬁ,oo[

Minimo ( ) +— vértice
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2) Se a < 0 a parabola tem maximo.

Méximo (—%, —ﬁ) +— vértice

Im(f) = }—oo, —%}

Representacao grafica:

A>0 A=0 A<O
Y Y Y
a>0 “”‘El - “i b 2 i
| — 5 __4a
—ﬁ L Xz 2a X _r)i T
Y v o,
,ﬁ E ‘ ~5q
Exemplo:
1. Faca o grafico de y = 2® — 62 + 8.
T =4 Yy
x_6i\/36—32 Va 16,1
S — $
To — 2
Minimo: ; (—6)
. 2 2
A 4 ‘
Y da 4 x
2. Determine o maximo de —z2 + x + 1.
__(1+4)__ 5 5
L R

Funcao Polinémio Racional Inteiro

Polinémio na variavel real z, é toda expressao do tipo:

A" + @y 1"+ a0 2 4 .+ agr? + a1z + ag, onde:
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® a,, Up_1, (p_2, ..., G2, A1, (g SA0 numeros reais, denominados coefici-
entes;

e n é um numero inteiro positivo ou nulo;

e o grau da expressao € definido pelo maior expoente de x cujo coeficiente
nao seja nulo.

Funcao polinomial de grau n, para todo z real, é definida como:

—1 —2
f(x) = apa" + ap1 2" + ap_22" "+ ...+ a1z +ag
considerando as defini¢oes acima.
Dominio: Dy =R

Imagem: Im(f) depende de n e de a,, a,_1, Gn_o, ..., az, a1, ag.

Exemplo: f(z) = 23

n par, o grafico é do tipo da pardbola

n fmpar, o grafico ¢ do tipo 2*
Abaixo destacamos algumas propriedades de polinomios de interesse para
0 presente texto.
Divisao de polinomios:

Considere dois polinémios p(z) e h(z), com h(xz) nao nulo. Dividir p(x)
por h(x) significa encontrar dois polinémios ¢(z) e r(x), que satisfagam as
seguintes condigoes:
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e p(x) = h(z) - q(x) + r(x); onde p(x) é o dividendo, h(x) é o divisor,
q(z) é o quociente e r(z) o resto.

e O grau de r(z) ndo pode ser igual nem superior ao grau de h(z) ou
entao r(x) = 0.

Dispositivo prdtico de Briot-Ruffini
Seja dividir um polinémio p(z) por h(z) = x — ¢. Como indicado acima,
podemos escrever
p(x) = (z —c)q(z) + 7, (*)

onde

—1 )
p(z) = apa™ + ap_12" " F a2+ ..t ax+ag, e

q(z) = by 12" by o™ E by by bz 4 by

Desenvolvendo o segundo membro da igualdade (x), fica:

(l‘ o C) q(:c) = bnflxn + (bn72 - Cbnfl>xn71 + (bn,:), - Cbn72>xn72 —+ ...
+(by — cba)a® + (bg — cby)x — cby + 7.

Igualando a expressao acima a p(z), teremos:

-1 —2 -1
™ + ap 12" Fap 22"+ @+ ag = by12" + (b2 — cby_q)2"

+(bn—3 - Cbn—2)l'n_2 +...+ (bl — Cbz)[EQ —+ (bg — Cb1)$ +7r— Cbo

Donde se conclui que:

bn—l = Qp,

bn—2 - Cbn—l =Qap-1 — bn—2 =ap—1 + Cbn—l
bn—3 - Cbn—Q =Qap—2 — bn—3 =ap-2 + Cbn—Q

bo—cby=a1 — by=a;+cb
T—CbOIOJQ — T:a0+0b0

Exemplo: Use o método de Briot-Ruffini para efetuar a divisao de p(x) =
32% — ba? +x — 2 por h(x) =z — 2.
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Termo constante do divisor | coeficientes de z do dividendo p(z) | Termo constante do
com sinal trocado 5 s ) dividendo p(z)
2 -2
coeficientes do quociente resto
3 2x3-5=1 2x14+1=3 2x3-2=14

Verificamos que q(z) = 32> + z + 3; r(z) = 4.

Teorema de D’Alambert

O teorema de D’Alambert afirma que o resto da divisdo de um polindémio
p(z) por (z —¢) é p(c).
Demonstragao. A divisao de p(z) por x — ¢, resulta num quociente ¢(z) e em
um resto r(z). Portanto podemos escrever:

p(x) = (z —¢) g(x) + r(x)
Fazendo = = ¢, vem:
plc)=(c=c)qlc)+r=0xgq(c)+r = r=p(c)

Exemplo: Pela divisao sintética (dispositivo de Briot-Ruffini), ache o quoci-
ente e o resto da divisao de —z* + 72® — 42% por x — 3.

Solucao:

3 —1 7 —4 0 0
-1 Ix(-1)+7=4 3x4—-4=38 3x8=24 3x24=172

Quociente: q(x) = —a3 + 4% + 8x + 24;
Resto: r(z) =72
Teorema do Fator

Se ¢ é uma raiz de um polinémio p(x), de grau n > 0, entdo x — ¢ é um
fator de p(z).

Demonstracao. Pelo teorema de D’Alambert, a divisdo de p(z) por x — ¢
resulta um quociente ¢(x) e um resto p(c), tal que:

p(z) = (z —¢) q(z) + p(c); se ¢ é uma raiz de p(z), entao, p(c) = 0 e teremos:
p(z) = (x =) g()

Portanto, z — ¢ é um fator de p(z).
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Como consequéncia, podemos afirmar que p(x) é divisivel por (z —a) e
por (z —b), com a # b, se, e somente se, p(z) for divisivel por (x — a)(z — b).

Equacoes polinomiais

Denomina-se equagao polinomial ou algébrica, toda equagao que pode ser
escrita na forma

U™ + Ay 18" a0t ar? +ar+ag =0

Relagoes de Girard
Seja a equacao do segundo grau az? + bx +c¢ =0, com a # 0.
Sejam 1 e x9, suas raizes.
Decompondo o primeiro membro em fatores do primeiro grau, fica:

az® +br + ¢ = a(z — 1) (x — 22) = a[2? — (z1 + T2)z + 1122

Dividindo o primeiro e o ultimo membros por a, fica:
2, b ¢ 2
4 —x+ — =2 — (1 + x2)T + 1129
a a

Considerando a igualdade entre o polinomio do primeiro membro da igual-
dade e o do segundo, temos:

b b
—(Slfl—i-l’g):— — T+ Xy =——
a a

c
1T = —
a

As relacoes acima sao denominadas, “relacoes entre coeficientes e raizes
da equacao algébrica do segundo grau”.

Para uma equagao algébrica do terceiro grau, por decomposicao de fato-
res, tendo com raizes x1, o, x3, teremos:

ar® +bx* +cx +d = a(r — z1)(x — ) (x — 13)
= alz® — (z1 + 22 + 33)2” + (1122 + 2123 + T273)T — T12273)

Dividindo o primeiro e o ultimo termos da equacao acima por a, fica:

3,0 5, c d 3 2
x +gx +5$—|—a:$ — (21 + @9+ x3)2° + (122 + X123 + To3)T — T1T2T3

Considerando a igualdade entre o polinomio do primeiro membro da igual-
dade e o do segundo, temos:

b b
—(1’14-[172—1-1'3):5 — CB1+I2+$3:—5
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c
T1Xo + T1X3 + Tol3z = —
a

d

T1X2X3 = ——
a

Para uma equagao algébrica do quarto grau, por decomposicao de fatores,
tendo com raizes x1, Tq, T3, x4, teremos:

ar* + b2 + e’ +dr+e = a(r — x1)(z — 22) (v — x3) (7 — 24)

=a [5104 — (21 + @2+ @3+ 24) 2% + (2122 + 103 + 21T + T3 + ToTy + T324) T

+(2122T5 + T1ToTs + T1T3Ty + ToT3T4)T + T1ToT3T4 ]

Seguindo o procedimento usado nas equacoes anteriores, teremos:
T+ T+ T3+ Ty = ——
a
c
T1T2 + T1X3 + T1T4 + ToX3 + ToTy + T3Ty = —
a
T1T2T3 + T1X2T4 + T1X3T4 + To2T3Ty = ——
a
e
T1T2T304 = —
a

Portanto, generalizando, podemos escrever para a equacao algébrica de
) )
grau n, ap" + 12"+ ap_o0x™ 2 + ...+ apx® + ayx + ag = 0, com raizes

X1, To, T3, ..., Ty, as seguintes relagoes:
e Soma de raizes:
Qp—1
ry+2x9t+23+...+tx, = —
aTL

e Soma dos produtos das raizes, tomadas duas a duas:
Ap—2

T1To +T1X3+ ... +Tp_ 1Ty =
n
e Soma dos produtos das raizes, tomadas trés a trés:
an—3
G,

T1Tox3 + 1Ty + ... + Tp_2Xy 1Ty = —

e Produto de n raizes:
Qo
n E—

T1X2x3 * ... = (—1) 0

Pesquisa de raizes racionais de uma equacdo algébrica de coeficientes inteiros
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Se o numero racional g, com p e q primos entre si, é raiz de uma equagao
algébrica de coeficientes inteiros a,z"™ + ap_ 12" + ap_ox™ 2 + ... + agx® +
a1x 4+ ag = 0, entao p é divisor de ag e ¢ é divisor de a,,.

Exercicios:

1) Dividir 5z° — 723 4+ 62? — 22 + 4 por z — 1.

Solugao:

q(x) = 5zt + 5x3 — 22% + 4w + 2
r(z) =06
2) Sem executar a divisdo, mostrar que x* + 323 + 322 + 2 é divisivel por
T+ 2
Solucao:
f(=2)=2"—3x2+3x22-3x2+2=16-24+12-6+2=0
3) Solicitagao semelhante & do item anterior, para f(z) = 2z% — 723 —
222 + 13z + 6, em relacio a 2% — 5z + 6.
Solucao:
5+ +/25—24
2
— 22 —5x+6=(rv—2)(z—3)
— f(2)=2x2'—Tx22-2x224+13x2+6=0;
fB)=2x3"—7Tx3P -2x32+13x3+6=0

2?2 =5r4+6=0 - o= — 11 =3; 39 =2

Funcao Racional

_ P@)
F@) = 5y

D, = {« € R| Q(z) # 0}

23 — 522 +4x — 1
Exemplo: f(v) = — 53—+ —

Dy =] —00,2[U]2,3[ U]3, +o0]

onde P(z) e Q(z) sdo polinémios racionais.
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Funcao Mdédulo

flz) = |z|
Dy =R; Im(f) =Ry

rz sex >0,
x| =
—z sex <O0.

y = |z

Operagoes com Funcgoes

Sejam f: E—>Reg: EF— Ronde F CR.

I) A soma de f com g.
frg:E—=R, (f+9)(x)= f(z)+g(z)
IT) Produto de f por g.
fr9:E—=R, (f g)(x)= f(z) g(x)
IIT) Diferenca de f e g.

f=9:E—=R, (f—g)(z)=f(z) —g(x)

IV) Sendo g(z) # 0 para todo = € E. Quociente de f por g.

V) Se A € R o produto de A por f

fE =R (Af)(x) = Af(z)
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OBS: Funcoes iguais: f(z) = g(z), Ve z € Re Dy =D,

Exemplos:
1) f(z) = +Vzt e g(z) = 22 sio iguais.
2) flxy=x—1eg(z)= ””Qx_x nao sao iguais pois Dy # D,.
3) flz) =weg(zr) =% Dy #D,.
)

4) Qual o dominio da funcao real f definida por f(z) = g(z) + h(x) onde
g(x) =V +T7eh(z)=+1—2a?

Dj={zeR|z+7>0} — > -7
Dp={reR|l-2>0} — <1
D; =D, ND,

Di={reR| -7<z<1}

Composicao de Fungoes
Seja f:A—Beg:B—C
gof:A—=C, (go f)(x)=yg[f(z)]

Exemplo: Sejam f: R — R, f(z) =2
g:R—->R g(x)=5-3z

9(y) = g[f(2)]

£
<
I
-
&)
N
I

R R R

f g
T X
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g(x) =5-3z,g[f(z)] =5-3-f(z) =5—-3(2z — 1) =8 — 6z
gof:R—R, (g0 f)(x)=8—6z

R R R
9 /
V.
feog
fl@)=2z—1, flglz)] =2 -g(z) —1=2(5-32) -1 =9 — 6z

fog:R—=R, (fog)(x)=9—6x

R R R
S
fof

fla) =201, f[f(x)] =220~ 1)~ 1=dz -3

fof:R—>R (fof)(x)=4x—3

OBSERVACOES:

I) Em geral go f é a funcao cujo dominio
Dyoy ={z|z € Dy e f(z) € Dy}
(9o f)(x) = g[f(x)], Vo, z € Dy

Exemplos:

1) frA—->Beg:A— B

37
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ANIm(f)#0  Dgoy ={a,b,c}

2) Seja f a funcao real definida por

r+1
fla) =2
D; =R - {2} Im(f) = R — {1}

Do =R —{2,5} pois

Dyop ={x|x €Dy e f(z) € Dy}
Quais x € Dy e tais que f(x) ¢ D7
Apenas z tal que f(z) =2

r+1
Tr— 2

2 =

—x =25

II) fog#gof
IIT) Composicao ¢ associativa
ho(gof)=(hog)of=hogof
(hogo f)(z) =h{glf(z)]}
Funcgoes Inversas

O mesmo conceito que nas relagoes bindrias. Contudo sendo f : A — B nem
sempre f~! é funcao de B em A.

Exemplo: f:R — [0, +o0|, f(z) = 2*
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A relagdo inversa f~' = {(z,y) € [0, +00[ xR |z = y?} ndo € funcao.
A condicao necessaria e suficiente para que f admita inversa f~! é que f
seja uma bijecao.
Exemplo:
1) f:R—=R, f(z)=3z—-1
f é bijetiva portanto admite inversa.
Determinacao de f~!:
f=A(z.y) eR?|y =3z -1}
' ={(z,y) eR?*|x =3y — 1}
Mas isolando y fica: y =

x+1

3
-1 __ xz+1

— T =5

2) f(z) = |z| ndo admite inversa pois ndo € bijetiva.

3) fle) =77 Dy=R—{-1} Im(f)=R-{0}
r1, T2 € Dy, 21 # 29 = f(21) # f(x2) = injetiva logo admite inversa.

OBS: Como funcgoes reais por convencao sao sobrejetivas, basta ver se
sao injetivas.

Determinacao de f~!:
f={(e.y) eR— {1} xR {0} |y = 15}
/7t ={@y eR—{0} xR— {1} |2 = ;15 }

rT="1 = aytr=1 = y=1¢

T

) Dy = Tm(f ) =R — {~1} ¢ Im(f) = D(/ ) = R — {0}
b) f(x) = A7 e f(f ' (z) = f*l(lx)—i-l = 1%“}+1 =T =%

_ —f(x 1— ol
f 1(f(:c)) _ 1f{x()) = = +i 1_ .,

= |f(f (@) = (f(2) =2
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Fungao Par e Funcao fmpar

Se f(z)= f(—x) PAR
Se f(z) = —f(~x) IMPAR }Vx €Dy
Exemplos:
1) f(z) = || é par, pois |z| = | — |

2) f(z) = 2% é impar, pois f(z) = 23, f(—x) = —23

Funcoes Mondétonas

1) Estritamente crescente

Sex1 € D, 29 € Dy exy <z = f(z1) < f(22)

2) Estritamente decrescente

Se xy € Dy, 29 € Dy ey <z9 = f(x1) > f(22)

3) Estritamente monétona se f é estritamente crescente ou estritamente
decrescente.

Exemplos:
1. f(z) =2z + 1 é estritamente crescente.

2. g(x) = 5(z + 1) é estritamente crescente.

N[

3. h:R% —, h(x) = % ¢ estritamente decrescente.

4. r: Ry = R, r(x) = 2 é estritamente crescente.

Teorema 2.4.1. Se f é estritamente mondtona, entao f é injetiva.
Teorema 2.4.2. Seja g a inversa de f.
I) f é estritamente crescente se e sd se g € estritamente crescente.

II) f € estritamente decrescente se e sd se g € estritamente decrescente.
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Funcgoes Definidas Arbitrariamente
Exemplos:
—x—1,

S
1) f:]-1L1 =R tal que f(z)=< —x+1, z¢€
0, T =

1, <0
2) f:R—=Rtalque f(z)=¢ 2, 0<z<1
3, v>1

~

—x, <0

3)f:R%Rtalquef(:c):{$2 >0
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ot
>

2.5 Exercicios

1. Faca o gréafico cartesiano das relagoes abaixo e diga quais sao as fungoes
de R em R.

A={(z,y) e R*|y = 2a} B ={(z,y) € R?|y* =27}
Y Y
2 1 21
FUNCAO
1 1 NAO
1 ~1
_2 _2
C=A{(z,y) e R*|y =27} D ={(z,y) e R? |z = y?}
Y Yy
4 | FUNCAO )
° NAO
2 T - I
—0.5 05 1 15 2
1 4
_1 i
-2 -1 1 é T T
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E={(zr,y) eR?*|2*+ 3> =1}

\ NAO

Yo o

2. Diga se cada um dos esquemas define ou nao uma fungao de A = {1, 2, 3,4}
em B = {5,6,7,9}.

FUNCAO

I11)

NAO

3. Classifique as fungoes abaixo (injetiva, sobrejetiva e bijetiva).
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fR=R, f(z)=x bijetiva
g:R—=>R, g(x)=2x+5 bijetiva
h:R—R,, h(z) = 2> sobrejetiva
J:Ry —=[0,400[, j(x) = 2? bijetiva
k : [0, +oo[— [0, +o00[ , k(z) = 2? bijetiva
m:] — 00,0l = [0,+00[ , m(z) = 2* Dbijetiva
p:R—= Ry, px) = |z sobrejetiva

q:R—{0} - R—{0}, q(z) =1 bijetiva

4. Seja A ={1,2,3,4}. Sejam f, g e h fungoes de A em A.
f(1)=3, f(2) =5, f(3) =5, f(4) =5

9(1) =1,9(2) =5,9(3) =5, g(4) =1
h(1) =7, h(2) =1, h(3) =5, h(4) =7

Qual das fungoes é injetora?
5. Sendo f : [=3,4] — B, f(z) = 22, uma funcao sobrejetora, especifique B.

?E;)B)::mg — B =19,16]

6. Classifique em par ou impar as seguintes fungoes de R em R:

— IMPAR
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a) f(x) =22 PAR
b) flz) =5z —1 N PAR; N IMPAR
y
4 A4
2 A4
AP 2 4 7
-2t

c) flx)=x*—-32>+1 (3 fungoes pares)

Fw) = f(~2) PAR
d) f(z) = |z| PAR
e) f(z) = — fMPAR
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46

F-o--

x+1
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g) flz) =25 +42% — 22  IMPAR (Trés funcoes fmpares)

_a:—l

b) fl@) = "— N PAR, N IMPAR
T —00 -1 +1 +00
x—1 — | - 0 +
z+1 — e 4+ 1+
r—1 + ! - | +
r+1 ! !
1+ +00 - —00 1~
—6 —‘4 -2

8. Seja f uma aplicagdo de A = {1,2,3,4} em B = {2,4,7,9} definida por
f()y=4, f(2)=2, f3)=Te f(4) =9. Construa f~1.

A B

9. Determine o dominio convencional das fungoes reais definidas abaixo por
f(z) igual a:



g)

h)

i)

)

8=

z2-3 __ z2—-3
22—-9 = (z+3)(z—3)

_T
z2+1

;r:2—73ic+12
2~ Te 4+ 1240
T 7£ 7:‘:\/4;9—48

4

3

Var+ 3
20 +32>0

1
Vr+1

r+1>0

Vi —a?
4—22>0
Va2 =5z +6
2 —5x+6>0

22 —=5r+6=0

5+25—-24
2

3

xr =

_ 541
T =7

/
p
2

VaTrerl
224+ +1>0
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D; =R

D; =R

D; =R — {0} ou R*
D;=R—{-3,3}

D; =R

D; =R — {3,4}

Dj={zeR|z>-3
Di={reR|z> -1}

Df:{.%ER’—leng}

Dy={zeR|z<20uz >3}
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2.6 Funcao Exponencial e Logaritmo

2.6.1 Preliminares

Propriedades da potenciacao

a™+a" =a™" sendo a # 0

(a-b)"=a™-b"

n

<g>n = Z_” sendo b # 0

Radicais
Ja=b < b =a
Quando a € R_ e n é par, nao existe raiz em R.

Quando a € R_ e n é impar, a raiz ¢ um ntimero negativo.

WVam = a% sendo a > 0
Propriedades: sendo a > 0 e b > 0, temos:

Vam=a
Vab=a- Vb

\/%:%sendob#o

vam = "{/a™P sendo p # 0
Vam™ = "R/amP sendo p # 0

49
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2.6.2 Funcao exponencial

Toda fungao do tipo | f(z) = a” | definida para todo z real coma > 0 e a # 1.

Gréfico:

y=2°

OBS: A curva passa por (0,1).
Dy=R; Im(f)=R%
a > 1 = Funcao crescente
0 <a <1 = Funcao decrescente
Equacoes exponenciais:
Quando apresenta incoégnita no expoente.
1) =8 = 2°=2% —

2) 31 43772 =12 = 3.3°4+9.3° =12 = 37(3+9) =12

— =1 = [z =0]
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3) 4*—3-2"4+2=0
Fazer 2% =y
2 r=2=

/
N\

1 =1 = |z =

v —3y+2=0 = y=

Inequacgoes exponenciais:

Sao inequagoes que envolva fungoes exponenciais.

20 >8 = 2°> 2 = [z >3

N\*  /1\*
Exercicios:
1) Resolva as equagoes exponenciais:
a) 7271 4 77t =50

€T

7
—+7-7 =50
7+

1

7 (2+7) =50
50

(%) =50

=7
b) 273 = 2772 4 62
820~ 2 =62
T =

o1
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c) 4° +16 =17-2°
2" =y
y? 4+ 16 = 17y
yP— 1Ty +16 =0

17+/225
- ==

16 2°=16 = |z =4]

Y= ou

Y

1 2 =1 — |z =0

d) 49* —7-7" =0
y* = Ty=0
yly—7)=0
y=0 ou y=7
7" =0 7T =7

e =1

2) Resolva as inequagoes exponenciais:

a) 49°t1 < 343
49 - 49* < 343
49° <7
72 < 7
2r <1

x <
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1 z+3 1
b) [ = —
) (5> = 35
NNy L
5 5 25
1\"_ 125-5
5 25 1
1 xr
Z) <5
(5)
57 < 5

—r<l1

2.6.3 Logaritmos

Consideremos dois n® reais a e b com a # 1. Se a® = b entao

‘logab:c & aczb‘

0<a #1

sendo { b0

Propriedades operatorias dos logaritmos:

1) log,(b-c) =log, b+ log, c

2) log, <é) =log, b — log, c
c
3) log, b" =n-log,b

Mudanca de base:

log,.b
log, b — 1080
log,.a

condicao de existéncia do logaritmo.

93
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ylog,.a =log.b
Exemplo:

1) Sendo y = log; 10, mudar para a base 10.
_logip10 1

logip3  logy3

2) Escrever na base 10 logy, 3.
logip3 _ logy3 _ logyy3
02,100  2log,, 10 2

logygp 3 = 1

Equacoes logaritmicas:

1) log; (logyz) =0

log, x = 5°

2) log,(x +6) =2
2 =x+6

?—x—-6=0

IR ERViEY
T 2
3
N _
T = Solucao = {3
S G {3}

3) logg(z 4+ 7) +logg(x — 1) =2
loga(s + )z — 1) = 2
(x+7)(x—1)=9
P —r+Tr—-7-9=0
7?24+ 6x — 16 =0
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Xz

 —6+/36+64

>

2 pY
2

4) log, x + logyx =6

logyz  logy,

Passar para base 2: log, v = =

log, 4 2

1
Og22x—|—log2x:6 logox =n
n
= -6
2+n
n+2n

=6

2

n=4
log,z =4

r=2"=16 Solugao = {16}

Exercicio:

1) Determine o conjunto solugao das equagoes:

a)

Solugao = {2}

logsx  logyx
logg z + loggx = 3 loggz = logZQ = 23
1
logs z + %5 _ 3 logsx =n
2n+n
=3
2
3n =06
loggz = 2
r=9

logs  + logys © = 6

1
08T _

logs x +

2n+n
2
3n =12

=6

95
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n=4
logs o = 4
r =5 =625
log,z  log,x
c) logyx —logygx =3 logs ¢ = log2216 = 42
log,
1 — =3
08y 1
dn —n
=3
4
3n =12
n=4
logyx =4
r=2"=16 Solucao = {16}
9
d) logy(x + 1) +logy(z + 1) = 3
1 1 9
10g2(;1; + 1) + M — _
2 2
logy(z+1) =n
2n+n 9
2 2
=9 = n=3
logy(z+1) =3
r+1=23
x="7 Solucao = {7}
Curva da fungao logaritmica:
y =logx
log x
p——
+0oo
-1 1 2 3 47
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O numero e (Base dos logaritmos neperianos):

Exemplo: Juros compostos.

R$ 100,00 rendendo 10% ao ano.

Fim do 1° ano 100+10 =110
Fim do 2° ano 110+ 11 =121
Fim do 3° ano 121+ 12,1 =133,1

Fim do 10° ano = 259,37

Generalizando:

1
Fim do 1° ano C’—i—gouC’(l—i——
n n

2
Fim do 2° ano (C+g)+l(0+€> _C<1+l>
n n n n

1 n
Fim do 10° ano =C (1 + —>
n

Se fazemos ou seja subdivisoes continuas, temos um limite.

) \"
e:hm(l—i——) n — 00
n

= 2,718281 . ..

Logaritmos Neperianos

E o valor da area compreendida entre a curva, o eixo dos x, a ordenada cuja
abscissa é x é a ordenada de abscissa 1.
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— [log1=0

logz = Area ABCD

Y

Dividindo AC em n partes iguais e A’C’ em n partes iguais.

Cada divisao de A’C’ é k vezes maior do que as divisoes de AC.

Cada altura do elemento A’C’ é k vezes menor do que a de AC = as
areas sao iguais.
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area ABCD = drea A’B’C’D’

= 4drea ABA'B’ = area CDC’D’

— area total ABC’D’ = drea ABCD -+ area CDC’D’
= area ABCD + area ABA’B’

—> logkzr =logzx + logk

Assim podem ser deduzidas todas as propriedades dos logaritmos . ..

log% =loga —logb

log(a)" =n-loga

1
log ¢/a = logar = ~loga
n

A esquerda de 1 as areas sao consideradas negativas ...
OBS:

1) logx = 2,30259 log,, = ~ 2,31og,,

2) A expressao a” pode sempre ser posta sob a forma e

x

y=a

logy = loga® = xloga

bx

loga=0 = logy=2-b = |y=e

loga = —b

logy=—-b-z = |y=e

29
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2.7 Coordenadas Polares

Um ponto no plano em coordenadas cartesianas é representado pelo par
ordenado (z,y) onde z, a abscissa, corresponde a proje¢ao do ponto no eixo
Ox e y, a ordenada, corresponde a projecao do ponto o eixo Oy.

No sistema de coordenadas polares, um ponto no plano é representado
pelo par (r,0), sendo r a distancia entre o ponto e um outro ponto fixo,
denominado origem do sistema (ou pélo) e o angulo # medido no sentido
anti-horario, entre a semirreta partindo do pélo e contendo o ponto, e um
eixo de referéncia que contém o pélo (eixo polar).

Estas formas de representacao de um ponto no plano, estao mostradas
nas figuras abaixo:

OBS.: (r,0) = (r,0 + 2m)

Exemplo: (r,0) = (r,0+27...)

Mudanca de coordenadas:

a) Polares para cartesianas

xz =rcosf

y =rsent

b) Cartesianas para polares
22 +y? =r?cos? 0 + r?sen 20
2 +y? =r?(cos®@+ sen’0) =1r? = r= /22 +y°
—_—
1

OBS.: Se r =0 = podemos tomar 6 qualquer.

Ser;«é0:>0059:£; senf = 2
r r

Exemplos:
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1) Circunferéncia centrada na origem, de raio 5:

Equacao polar:

Como z =rcosf ey =rsenf = r* =25
R

2) Transformagao de coordenadas cartesianas para polares. Seja o ponto
P(1,1).

r=2 i

g P(r.0) =P (V2. %)
g

OBS.: P(z,y) = P(1,1) coordenadas cartesianas

= P <\/§, g) coordenadas polares

3) Transformar as coordenadas cartesianas para polares de P(—1,1).
Solugao:
2= (=12 +12 = r=v2
1 V2

cos) = —— = ———; senf =

N

_37r

4

Sl
S

=0

w

Entao o ponto P tera como coordenadas polares (\/5, Z)

4) Encontrar as coordenadas cartesianas do ponto P (—2, %)

=— T
;_22::1?((6%)) = ao=-1;y=—V3 = P(-1,-V3)
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Equacgao da circunferéncia em coordenadas polares:

Y
P(zx,
N (z,y)
C(z0,90) U v Centro C: (xo, o)
R Raio: R
Yo b ---f--m--- 4o
r I I
X — T
To 1 1
Al
00 | |
0 950 5;0 T

Equacao: (z — x0)*> + (y — v0)? = R?

Centro da circunferéncia: Ponto da circunferéncia:
To = 7o cos b Tz =rcosf
Yo = 7o sen b y =rsend

= (rcosf —rgcosfy)? + (rsenf — rosen by)? = R?

r? cos? @ — 2rgcos by - rcos + 7“3 cos? 0y + 2 sen?d — 2ry sen by - rsen 6 + 7“8 sen’6,
= R?
r?(cos® § 4 sen?0) + r2(cos? Oy + sen®y) — 2rg cos by - 7 cos @ — 2rgsen by - rsen O

= R?

Considerando que:

r?(cos? 0 + sen?0) = r? e rZ(cos? Oy + sen?6y) = r2

temos:

172 —2rq cos Oy -1 cos  —2rgsen by -rsenf + 15 — R =0
N ———— —_—

a b c

Equacao da circunferéncia:

> +arcosh+brsenf +c=0

onde:

a = —2rqy cos bty
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b= —27’0 sen@o

c=rs— R?

Exemplo: Represente graficamente a circunferéncia dada pela expressao abaixo:

2 — \/3rcosf —rsenf —8 =0

®a = —2rycosby = —V/3

sen 0, 1 V3
=tgly=—==—
b= —2rysenfy = —1 cos bty 3 3
c=r5— R*= -8 V3 0
0 tg@oz? = 60:6
3
@ = —\/§:—2T0X\/7_ 3
= |senfy = —|;|cosbty = —
2
Yy
rd — R*= -8 3
12 — R? = -8
_R?__g 3 7T/6
M
R = x

Casos Particulares

1) Circunferéncia centrada na origem com raio R
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z? + y? = R? (coordenadas cartesianas)

ﬂ r? cos® 0 + r?sen’d = R?

0 ;j , T(cos® 4 sen’d) = R?
\J r’=R? = coordenadas polares

A partir da equacao geral

r?+argcost +brogsend +c=0
a = —2ry cos b
b= —2rgsenty p com|ro=c| = r? =R’ =

c=ri— R?

Circunferéncia de raio R centrada num ponto pertencente a Ox e tan-
gente a Oy. Tangente a direita do eixo:
(r — R’ +y* = R?
y 2> —2Rx + R+ > = R?
22 +1y? —2Rx =0
= r2cos?0 — 2Rr cos + r?sen?d = 0

0 @2]{ r  1%(cos? 0+ sen?d) — 2Rrcosf = 0
D

1

12 —2Rrcos@ =0 = r? = 2Ry cosf

A partir da equacgao geral:
® 1% —2rgcosby - rcosf — 2rgsenfy - rsenf +ri — R?* =0
a = —2rq cos by
comxg=R; 6,=0
b= —2rgsent;
c=r2— R?

= 0=~ = 2k > o=

® 12 —2Rrcosf =0

= rf = 2Ry cost =

:>7"0:R
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OBS.: Tangente ao eixo Oy, a esquerda:
r =—2Rcosf

Exemplo:

r = 10cosf (tangente & direita) .

r = —10cos @ (tangente a esquerda)

-1 x

3) Tangente ao eixo Ox.

Acima do eixo
>+ (y— R)*>=R?
x=rcosf; y=rsend

2o=0;y0=R

—~
/\y
g

r?cos? 0 + (rsend — R)? = R?
r2cos? 6 + r2sen?0 — 2Rrsend + RZ = RZ

7%(cos® § + sen®§) — 2Rrsenf = 0
—_———
1
r? —2Rrsenf = 0

r? = 2Ry send

Exemplo: = 10sen @ (tangente a Ox por cima)
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Y

10

|
Iy
o
[ N
8

Exemplo: r = —10sen  (tangente a Ox por baixo)

2?4+ (y+R)* = R?

I
ot
=~ -J >

—10

Como caso particular da equacao geral, temos:

r*+argcosd +brosenf +c =0

Neste caso particular, temos:

= -2 0
a To COS Up rO:R
b= —2rysené,
’ ’ 90:Z:>eb:—27”0:—2R
c=r?—R? 2
c=0

= r2 —2Rrsenf =0
r? = 2Ry'senf

Espirais em coordenadas polares

a) Espiral de Arquimedes
r=a-+ bl

0
Exemplo: r = =
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DR )= PN EE S (B1 =
A N ! =
@ (§e> (0<6<1257)
:
L
@
—2:5- Q
b) Espiral hiperbdlica (é a inversa da espiral de Arquimedes)
rd =a
2
Exemplo: r = —
—_— 0
NREEDCEPIANAE Sicag=
Bl AR N 22 N
@ - (%;e), (0<6<1257) E * i

+

08 X6 04 EJ)OA o olg 1l ala e e o2 e deale 3 ab ﬁw

Q

c) Espiral logaritmica

r=a"; a>0 || coordenadas polares: r = ae’ “°'&?

Exemplo: 7 = 2¢/10

67
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k] & -~ & > oo 4Nz Sc Q=
VL - I N ! &
Q@ (ﬁ;s), (0<0<1257)

+ | Ent

@
QU
d) Espiral parabdlica
r=aVe
Exemplo: r =20
(&) & 74> 00 &) N]= Doaa—
A% N @
(@) r:(z\/m), (0<6<1257)
L
QU
Q

2.8 Funcoes Trigonométricas

2.8.1 Funcao Seno

Seja a circunferéncia com raio = 1
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Y —
sen (AM) = OM;
B
~ M
Ml/\
A
B/

Propriedades da fungao seno:
1) Dominio R.
2) Imagem {y e R| —1 <y <1}

3) (+) no I° e II° quadrantes.
(—) no II1I° e TV® quadrantes.

4) Crescente no I° e IV® quadrantes.

Y

1p--- y = sen ()

0 z ™ 327r o
S A

Decrescente no I1° e III° quadrantes.

5) Fungao tem periodo 2.

6) Fungao fmpar.

2.8.2 Funcgao Cosseno

Y Y

cos(AM) = OM,

B

Oy

A’QM; A T 0

B’ -1

Propriedades da fungao cosseno:
1) Dominio R.

2) Imagem {y e R| —1 <y <1}

69
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3) (+) no I° e IV® quadrantes.
(=) no II° e III° quadrantes.

4) Crescente no II1° e IV® quadrantes.

Decrescente no 1° e II° quadrantes.
5) Fungao tem periodo 2.

6) Fungao par.

2.8.3 Funcao Tangente

Y c4| tg (AM) = AT Y

B
/ \T
AN/

B/

|
|
!
!
|
|
|
|
|
T
|
|
|
!
!
|
|
|
|

Os arcos onde OM //¢ a fungao nao é definida:

xz%%—kw, keZ

Propriedades da funcao tangente:
1) Dominio {m eR ) x # g + kﬂ'}.
2) Imagem R.

3) (+) no I° e III° quadrantes.
(=) no I1° e TV® quadrantes.

4) Crescente em todos os quadrantes.

5) Funcao tem periodo 7.

6

)
)
) Fungao impar.
7) lim tgz = +oo, lim tgz = —oo, lim tgax = 400, lim tgx =
T—5 IH%JF x_>37“7 x—>37”+

—00
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2.8.4 Funcao Cotangente

’ cotg (AM) = BD

Bl D

d

/Jv

A/QJA x

B/

2.8.5 Funcao Secante

B

e

sec(AM) =

S

RN

B/

Propriedades da funcgao secante:

1) Dominio {x eR ‘ T # g + lmr}.

0 g\w ‘ZTXW T
Y y = sec(x)

o

2) Imagem {y e R|y < —1ouy > 1}.

3) Funcao par.
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2.8.6 Funcao Cossecante

Y

cossec (AM) = OC

B/

g
NI !

B/

Propriedades da funcao cossecante:
1) Dominio {x € R |z # kr}.
2) Imagem {y € R|y < —louy>1}.

3) Fungao tem periodo 2.

2.8.7 Resumo dos sinais e variacoes das funcgoes trigo-
nométricas nos diversos quadrantes:

Quadrante sen x cosx tgx cotgx secx cossec T
1 + + + + + +
0até 1 1 até 0 0 até oo oo até 0 1 até oo oo até 1
1 i - - - - N
laté0 |O0até —1| —co até 0| 0 até —oo | —oco até —1 1 até oo
I - - t + - -
Oaté —1 | —1laté 0| 0 até oo caté 0 | —1 até —oo | —oo até —1
v B + - h + p
—laté 0| Oatél | —oocaté 0| 0 até —oo oo até 1 —1 até —o0

2.8.8 Relagoes entre as fungoes trigonométricas

® sSenxr —

————; cosx =
COSSeC T

secx’

o sen’z +cos’x =1; 1+ tg?x =sec’x; 1+ cotg?x = cossec’x

® SCNnr = COS(

2

T
——x

;cosr =sen (- —x); tgx = co — -
; COS 5 5 7 g g B
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e sen(m—x) = senx; cos(m —x) = —cosz; tg(m—1x)=—tgx

Foérmulas da adigao
e sen(xr+y)= senxcosy =+ coszseny

e cos(x +y) = coszcosy F senxseny

tgr £ tgy

) = T ey

cotgrcotgy F 1

t +y) =
* cotg(v+y) cotgx £+ cotgy

Formulas de angulos duplos

2tgx

e sen2r = 2senx cosx; cos2r = cos’x — sen’w; tg2r = 5
1—tg?x

2tg 1

x x o T o T g5

e senx = 2sen — cos —; COST = coS” — — sen” —; tgx = T
2 2 2 2 1— tg?5z

o cos’r =1+ 3cos2x; sen’z =5 — 3 cos2w

T T
1+cosx = 2C082§; 1 —cosx = QSenQE

T 1 ——cosz T 1+ cosx

Sy [ cos D =y ——

° sen2 5 : (:os2 5 ;
tgfzi /1 —cosz
2 1+ coszx

Soma, diferenca e produto de fungoes trigonométricas

e senz + seny = 2sen 5(z + y) cos 3(z — y)
e senz — seny = 2cos 1 (x +y) sen 5(z — y)
e cosz + cosy = 2cos 3 (x +y) cos 3(z — y)
e cosz — cosy = 2sen 3(z + y) sen 3 (y — x)
e senzseny = 3{cos(z —y) — cos(z +y)}
e coszcosy = 3{cos(z —y) + cos(z + y)}

e senzcosy = 3{sen(z —y) + sen(z+y)}

73
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Valores das funcgoes trigonométricas para “angulos notaveis”

30° 45° 60°
sono 1] V2 | V3
2 2
€OSseno @ Q 1
2 2
3
tangente g 1 \/3

2.9 Funcoes Trigonométricas Inversas

2.9.1 Funcao arco seno:

Yy = senzw
Inversa — x = seny
= y = arcsenx

xvariade—laleyde—ga+g

’ 7= arcen]

2.9.2 Funcgao arco cosseno:

Y = COST
Inversa — x = cosy
= Y = arccos x

rvariade —laleydeOanm
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2.9.3 Funcao arco tangente:

y=tgx
Inversa — = = tgy
=y = arctgz

T
x variade —oo a +oo ey de —— a +—

™

2 2
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2.9.5 Funcao arco secante:

Yy
Y = arccosx
| |

2.10 Translacao, Reflexoes e Expansoes de Funcoes
Translagao do gréfico de uma funcdo y = f(z) (com ¢ > 0):

a) y = f(x)+c¢; translada o gréfico de y = f(x), de ¢ unidades para cima.

b) y = f(x)—c; translada o grafico de y = f(x), de c unidades para baixo.

¢) y = f(x—c); translada o gréfico da fungao original, de ¢ unidades para
a direita.

d) y = f(x+¢); translada o grafico da fungao original, de ¢ unidades para
a esquerda.

Reflexdes e expansoes do grafico de uma fungao y = f(z) (com ¢ > 1):

a) y = c- f(x); expande o grafico de y = f(x) verticalmente por um fator
de c.
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b) y = % f(x); comprime o grafico de y = f(x) verticalmente por um
fator de c.

c) y = f(c-x); comprime o gréafico de y = f(z) horizontalmente por um
fator de c.

d) y = f(z/c); expande o o gréfico de y = f(x) horizontalmente por um
fator de c.

e) y = —f(x); reflete o grafico de y = f(z) em torno do eixo x.

f) y = f(—x); reflete o grafico de y = f(x) em torno do eixo y.

2.11 Funcoes Transcendentais

As funcoes transcendentais sao as funcoes nao algébricas, que incluem as
funcgoes trigonométricas, trigonométricas inversas, exponenciais, logaritmicas,
e outras fungoes que nao sao classificadas como as anteriores, como por exem-
plo, exp(x), tg(z), In(z), I'(xz). A composicao de fungdes transcendentais
pode gerar uma funcao algébrica.

1

Exemplo: f(z) = sen (cos™' z) = /(1 — 22)

2.12 Aplicacoes

2.12.1 Centrifugacao

No processo de centrifugacao, separamos materiais pela sua massa. A taxa
de sedimentacao depende do campo centrifugo aplicado, da densidade e do
raio da particula, e da densidade e viscosidade do meio. Para efeitos praticos,
utilizamos o célculo da “forga centrifuga relativa” (RCF) que informa quantas
vezes o campo centrifugo é maior do que o campo gravitacional g. Da Fisica,
podemos escrever

T =  wmgx RCF
S—— ——
Forca centrifuga Forca equivalente,

(considerado r perpendicular  em multiplos de ¢
ao eixo de rotagao)
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A
onde: w: velocidade angular (Ki)

r: distancia entre a particula e o eixo de rotagao

g: aceleracao da gravidade

A relacgao entre a velocidade angular w e o minimo de rotagdes por minuto
(rpm) pode ser escrita como:
27 X rpm
w=——
60

onde o valor 60 no denominador é devido a passagem de segundos para
minutos.

O campo centrifugo gerado pela rotacao nas particulas a distancia r do
eixo, vale:

60 3600

A razao entre este valor e o campo g, é:

21 X 2 Ar? 2
w%:(?f_fprn) oo Am(pm)®

2 Ar2 2
wr_ Al 10 x (rpm)? x
g 3600 x 980

RCF =

onde o valor 980 no denominador corresponde a aceleracao da gravidade, g,
em cm/s?, e nao m/s?.

Exemplo: Um rotor com raio médio 5 cm, girando a uma velocidade angular
10.000 rpm, cria um campo centrifugo de...

Solucao: RCF = 1,11 x 107° x 10% x 5 = 1110 x 5 = 5550g

2.12.2 Espessura de filme ultrafinos por interferéncia
de luz

Filmes finos transparentes, estao presentes em muitas situagoes experimen-
tais, como, camada de 6leo sobre agua, ou sobre uma superficie de vidro, su-
perficies de bolhas de saba, ou cortes ultrafinos de resina epoxi contendo ma-
terial biolégico obtidos por ultramicrotomia, boiando na superficie da agua na
“banheirinha” do ultramicrétono. A determinacao da espessura deste corte
¢ fundamental para a sua posterior analise por microscopia eletronica de
transmissao pois, como se sabe, os elétrons penetram fracamente na matéria,
limitando as espessuras observaveis, a valores que usualmente nao ultrapas-
sam 100 nm (1 nm = 107 m).
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As espessuras de filmes finos podem ser estimadas pelas cores de inter-
feréncia causadas pelos raios refletidos nas interfaces do filme com o meio
adjacente.

Seja a situacao das bolhas de sabao, considerando a figura abaixo onde a
incidéncia da luz é aproximadamente perpendicular a interface com o ar e a
espessura do filme diminuta.

raiog )
ralo: , . ~
2 Ngme: indice de refracao do filme.
ar N.: indice de refragao do ar.
d d Reflexao na interface ar/filme causa

filme inversao de fase na onda de luz.

Reflexao na interface filme/ar nao
ar causa inversao de fase.

Para o caso de interferéncia destrutiva: Diferenca de caminho entre os
raios (D) e (2) (consideradas as aproximagoes feitas):

2= ha]s comm =123,

onde \,, = comprimento de onda da luz no ar, Ag,e = comprimento de onda
da luz no filme.

. . A
A optlca nos ensina que: >\ﬁ1me = =
Nflme
A
= |2d = m)\ﬁlme =m—=
Nfilme

Para o caso de haver interferéncia construtiva, devemos ter:

1
2d = (2m — 1)5)\ﬁ1me; m=1,2,3,...

1/ A

= 2d=(2m—1)= ( = ), ou seja, um numero impar de meios compri-
Nflme

mentos de onda.

Exemplo: Imagine um feixe de luz na faixa do visivel (400-700 nm) incidindo
perpendicularmente a superficie de uma bolha de sabao (considere npoma =
1,34), cuja espessura do filme de sabao foi obtida previamente e vale 300
nm. Quais os comprimentos de onda na faixa do visivel que apresentariam
interferéncia construtiva neste caso?
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Solugao:

meios comprimentos
de onda dentro
do filme

n® impar e N

1 )\ar
2d = (Qm — 1) 5 -~
1 )\ar
= 600 = (2m — 1)7 x o

1608 = (2m — 1) \ar

= 1608 (infravermelho, nao visivel)
= 536 (verde, visivel)

= 321 (ultravioleta, nao visivel)

Exercicio: Considere um corte ultrafino de resina epoxi transparente, cujo
indice de refracao é n = 1,5, boiando sobre a d4gua no ultramicrétomo e com
luz incidente aproximadamente perpendicular a superficie do corte. Quais
os comprimentos de onda que apresentam interferéncia construtiva para as
componentes de luz refletidas na faixa do visivel (400 nm a 700 nm) se a
espessura do filme for de 100 nm?

Solucao: Expressao para interferéncia construtiva:
Aar

2d — (2m—1)% X

2% 100 = (2m — 1) x T

(2m — 1)\ =2 x 100 x 2 X 1,5 nm
(2m — 1)\, = 600 nm

lm—zll = ‘)\ar = 600 nm |, visivel

= Aar = 200 nm, ultravioleta

Expressao para a interferéncia destrutiva:

2d =m Aar = QOOZmE
Nfilme ]-75
mAa = 300

= 300 nm

OBS: Com a combinacao dos comprimentos de onda para interferéncia cons-
trutiva e destrutiva é possivel construir uma tabela de cores para as espes-
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suras.

As cores da interferéncia para cortes ultrafinos de resina epoxi boiando so-
bre a 4gua no ultramicrétono, dependem da combinacao entre interferéncias
construtivas e destrutivas.

Para cortes de 100 nm, por exemplo (espessura 6ptica de 100 x n =
150 nm, pois n = 1,5 para resina epoxi), ha interferéncia destrutiva para
comprimentos de onda de 300 nm, ou seja, proximo ao azul. H& também
interferéncia construtiva na regiao de 600 nm, préximo ao vermelho.

O resultado é um deslocamento para a faixa espectral no sentido de com-
primentos de onda maiores com predominancia do amarelo e vermelho, dando
a sensacao de dourado.

Na tabela abaixo vemos a correspondéncia entre as cores.

cinza escuro | < 40 nm
cinza 40-50 nm
prateados 50-70 nm
dourados 70-90 nm
purpura > 90 nm

Exercicio: Encontre uma expressao para a diferenga de caminho éptico entre
os raios luminosos refletidos nas superficies de bolhas de sabao, considerando
um angulo de incidéncia ¢ em relagao a normal a superficie externa da bolha.

Solugao:

OBS: Reflexao na interface ar/filme
causa inversao de fase na onda lumi-
nosa. Reflexdao na interface filme/ar
nao causa inversao na fase.

nge: Indice de refracao do ar.

filme ny: indice de refracao do filme.

1: angulo de incidéncia

ar

r: angulo de refracao
t: espessura do filme
2d: caminho da luz no interior do

5. @ tridangulo hachurado
Ai o
< Lei de Snell:

W_/
2dsenr Ng Seni:nf- senr
Ng = 1



82 CAPITULO 2. RELACOES E FUNCOES

2t T
0 = sen r sen (— — z)
cosT 2

2tsenr - sent

= 0 =
COST

Mas n, -seni =nssenr (pela lei de Snell)

1

2tsenr X nysenr
= 51 ==
cosT
2tnfsen2r
0 = ————
cosT
52 =2d =2 % X Ny
cos T
2n ¢t
0y = —1
cosT

Diferenca do caminho éptico:

COS2 T

2nst  2ngtsen’r  2ngt(1l — sen’r)

(5 - 52 —61 -
cosT cos T CosT
2t cos? r
§="" 0 o 0 = 2nycosr
COST

Interferéncia destrutiva

0 =2nstcosr = mA; m=1273,...
—~

n° inteiros de
comprimentos de onda

Interferéncia construtiva

1
(5:2nftcosr:(2m—1)§ X\;m=1,2,3,...

J/

TV
n° fmpar de meios
comprimentos de onda

ou

1
0 =2nystcosr = (m—|—§>x\; m=20,1,2,...
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2.13 Exercicios

1) Determine as coordenadas do terceiro vértice de um triangulo retangulo
com pontos (a,b) e (¢,d) como extremidades da hipotenusa, cujos ca-
tetos sao paralelos aos eixos, como na figura.

Y
AN (C, d)

(a,b) (7,7

~

Solucgao: (a,d)

2) O gréfico de uma funcao linear f(x) passa pelos pontos (3,2) e (5,8).
Encontre o coeficiente angular m e o coeficiente linear b e a equagao
que descreve f(z).

Solucao:
f(z) = mx + b, onde
Equagao passa por (3,2), entao: 2=3-3+b;b=-94+2= -7
A equagao fica: y =3z — 7
3) Encontre a equagao da reta paralela a reta y = 3x 4 2, que passa pelo

ponto (2, 14).

Solucgao:

A nova reta tem coeficiente angular 3, isto é, y = 3z + b
Reta passa por (2,14), entdao: 14 =3-2+b; b =38
Equacao da nova reta: y = 3z + 8

4) Determine o ponto (z,y) onde o graficode (1) y = 3z+2e (2) y = x—5,
se cruzam, e trace o grafico das retas no plano cartesiano.

Solucgao:



84

CAPITULO 2. RELACOES E FUNCOES

3r+2=x—->5;2xr=—T1,
Substituindo em (1), calculamos o valor de y

2y =4 —21

717
O toé: [ —— ——
ponto e ( 5 2)

Encontre a equagao da reta que passa pelo ponto (8, 1) e é perpendicular
areta y = 4x + 5.

Solucgao:
Sendo a reta original y = maz + b, a reta perpendicular (y = myx + by)

tem o coeficiente angular igual a: —<, e portanto m; = —1
m 4

A reta perpendicular passa por (8,1), entdo: 1 = (—i) -84+ b; 4 =
-8+ 4b1; b1 =3

Reta perpendicular: y = —%:1: +3

OBS: Dedugao do coeficiente angular da reta perpendicular a uma reta
dada

Determine sen (2z) sabendo que tg(z) + cotg (z) =8

Solucgao:
senr  CcosT

=8 — sen?x + cos?z = 8senx - cos
CcoST  senx .
— 1=4-2senx cosx — 1 =4sen (2x) — sen (2z) = 1

Desenhe o grafico da funcao f(x) =1+ senx

Solucgao:
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[NE
3
N

27

8) Desenhe o grifico, determine o periodo e a imagem das fungdes:

a) f(x) =3senzx
Solugao: Periodo 27; Imagem: y variando no intervalo [—3, 3]
b) f(z) = cos(2x)

Solugao: Expressao genérica f(x) = cos(kz), onde k = 27”, pois
cada vez que x é multiplo do periodo p, a funcao se repete (lembrar
que, na fungado cosseno, o periodo é 27). Entao, como k = 2, fica:
2= 2?7’ — p = 7. Imagem: y variando no intervalo [—1,1].

¢) f(z) = cos(3x)

9) Determine o valor de x no triangulo abaixo:

10m 120°

45°

Solucao:
o o V2 V3
45 120 M= 3
SN _ S 2 2 By =10-v3 s o =104/2
10 T 0 T 2

10) O indice de polui¢ao p(t) em unidades arbitrdrias (u.a), numa certa
cidade é uma funcao linear do tempo t. Se o indice de poluicao é 4,0
as 2 horas da tarde e 8,0 as 6 da tarde, faca uma predicao de seu valor
as 9 horas da noite.
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Solucgao:

Podemos resolver o problema por uma simples regra de trés (solugao
1), ou escrevendo a reta p(t) (solugao 2, geral), para qualquer valor de
t.

8—4 x—4 4
lugdo 1: —— = - T7T=x—4 = 11(u.
Solugao s 2-9-3 "1 T=z - (u.a
. . 8 —4
Solucao 2: Coeficiente angular m, da reta p(t); m = 62 = 1 —
p(t)=xz+b

Reta passa por (2,4), entao
4=24b—-b=2—-pt)=2+2—=>p9) =9+2=11(ua)

Encontre as equacgoes das retas que satisfacam as condi¢oes dadas. Es-
crever a equacao na forma:

a) inclinacao (—5) e interse¢ao com y = 3
b
c
d
e) passa por (2,4) e é horizontal
f

inclinacao 3 e intersecao com x = 4
inclinagao 2 e passa por (—1,3)

passa por (2,4) e (3,9)

)
)
)
)
)
) corta o eixo y em 4, e x em 2

Solucao:

a) y = —bzx + b; passa por (0,3);3=04+b—>0b=3 > y=—-5x+3
b) y = 3x+b; passa por (4,0); 0 =3-4+b—b=—-12 >y =3x—12
c)y=20+b—=3=2(-1)+b—=-b=34+2—=>y=2r+5

9—14
d) y:mx+b—>m:3—2:5—>y:5x+b;passapor (2,4);

4=5-24b—=>b=—-6—->y=5r—-6
e) y=b—>b=4—>y=4
0—4

f) y:ma:+b—>m:ﬂ:—Z;b:4—>y:—2x+4
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A reta Li, passa pelos pontos (2,3) e (=2, —3) e é paralela a reta Lo,
que passa pelos pontos (1,5) e (z,8). Calcule o valor de .

Solucao:
Os coeficientes angulares das duas retas devem ser iguais.
-3-3 8-5 —6

99 -1 3 g1 ETifl=s

mip = Moy —

Num experimento sobre a relagao entre pressao e volume de um gas,
verificou-se que quando a pressao é 1 atmosfera (atm), o volume é 30
cm?®, e quando a pressao atinge 10 atm, o volume é de 5 cm?®. Faca o
grafico da pressao em funcao do volume e calcule a inclinagao da reta

que os pontos determinam.

Solucgao:

Uma dose de 4 mg de um medicamento é ministrada em um paciente. A
concentracao da droga na corrente sanguinea do paciente apods t horas,

4
pode ser calculada por K(t) = e (mg/ml) . Pergunta-se:

a) Qual a concentragao sérica do medicamento, apés 1 hora? Apds
2 horas? Comparar com a concentracao inicial.

b) Esboce um gréfico da concentracao sérica do medicamento, em
relagao ao tempo decorrido apds sua aplicacgao.

O tempo, em minutos, que uma pessoa submetida a um teste, leva
para completar uma tarefa, pode ser calculado por meio da férmula

) = 2.

Pergunta-se:

onde z é o QI (coeficiente de inteligéncia) da pessoa.

a) Quanto tempo a pessoa deve levar para completar a tarefa, se seu

QI for 1007

b) Qual o QI de uma pessoa que termina o teste em 40 minutos?

Um bidlogo pretende fazer duas solugoes quimicas. Ha 36 g do reagente
I, 36 g do reagente II e 66 g do reagente III. Cada litro da solucao A
requer 1 g do reagente I, 4 g do reagente II e 6 g do reagente III. Para
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cada litro do regente B, sao necessarios 3 g do reagente I, 1 g do rea-
gente Il e 3 g do reagente III.

Para obter quantidades méaximas em litros, quantos litros de cada
solucao, isoladamente, devera fazer?

O alivio R (unidades arbitrarias u.a.) que uma aspirina provoca, é
igual a quatro vezes o tempo t decorrente desde que é ingerida, menos
o mesmo intervalo de tempo t elevado ao quadrado.

Expresse a quantidade de alivio como uma funcao do tempo, e desenhe
o grafico da funcao. Qual o intervalo de tempo para o qual o efeito é
maximo?

Solucgao:

R(t) = 4t — t> = t(4 — t), de onde se conclui que o grafico corta o eixo
das abcissasem t =0,et =4

b 4
Ponto de maximo: a parabola tem maximo —— = —— =2
2a 2(—1)
R(t)
dF----- i
l t
0 2 4

A porcentagem de ovos de mariposas das magas, que sobrevivem é de
N(T), onde a temperatura T °C é dada por: N(T) = —0,53172+ 25T —
209, para a faixa 15 < T' < 30. Perguntas:

a) Qual a porcentagem de ovos que sobrevivem quando a tempera-
tura é 15°C?

b) Qual a porcentagem que sobrevive a 30°C?
c) A que temperatura a taxa de sobrevivéncia dos ovos é méxima?

d) Qual porcentagem sobrevive na temperatura étima?
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19) Um guarda florestal tem uma escolha entre duas abordagens de manejo
da vida selvagem. A primeira produzird uma populagao f(x) de cervos
no final de z anos, onde f(x) = 202%2—80z+500. A segunda abordagem
levard a produgao de cervos g(x) no final de z anos, onde g(z) =
—5022 4+ 400z + 500. Pergunta-se:

a) Qual abordagem leva & maior populagdo de cervos no final de 2
anos? E de 4 anos?

b) Em que ponto no tempo, as duas abordagens levardo a mesma
populacao?

¢) Desenhar os gréficos de f(z) e g(x) num sistema de coordenadas
ortogonais.

d) Qual abordagem vocé recomendaria para produzir o maior nimero
possivel de cervos em um tempo indefinido?

20) Usando sen?z + cos?z = 1, encontre:
a) 1+ tg?r =sec’z, parax # 2+ km, ke Z
b) 1+ cotg?x = cossec?r, para x # kr, k € Z

Solucgao:

sen?r  cos’x 1 ) )
a) St =5 > tgfr+1=sec’x
cos?x  cos?xr  cos?x

2 2
sen’r  cos’z

b) st = 5— — 1+ cotg?r = cossec’z
sen2r  sen?z  senZ2xy

21) CALCULO ESPESSURA DE CORTE ULTRA-FINO SOBRE SUPERFICIE
DA AGUA NO ULTRAMICROTOMO, POR INTERFERENCIOMETRIA

22) CALCULO DE ESPESSURA DE CORTE ULTRAFINO NO MICROSCOPIO

ELETRONICO DE TRANSMISSAO USANDO A PARALAXE EN-
TRE IMAGENS

23) A partir da equacdo (z — x0)* + (y — yo)? = R?, que representa uma
circunferéncia com centro em (xg, y) e raio R, ache a equacao geral da
circunferéncia, e calcule as coordenadas do centro e o raio da circun-
feréncia 22 + y? — 62 + 10y + 9 = 0.
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24) Represente graficamente:

a) y=4—z?
b)y=x-1
c) y=a*

Q) y= (- 1)
e) y=(z+1)°
f) —2<y <5
g) y=a?—2

CAPITULO 2. RELACOES E FUNCOES

25) Para cada uma das fungoes abaixo, determine: a) Dominio (D), b)
Gréfico cartesiano, ¢) Imagem (I), e d) diga se ¢é injetora (ou nao),

sobrejetora (ou nao).

.—4
Il
—

—
—

—
—
—

—
s T S UL
I

<
— o~
— —
N N N N

Il I
P A A A P A
—~
8
<
SN—
m
=
no
NS
|
88
——

IR

26) A Fracao F' da luz que é absorvida por qualquer gas no ar esta relaci-
onada de forma logaritmica com a concentragao c¢ do gas, e a distancia
d percorrida pela luz; esta relacao é chamada de Lei de Beer-Lambert:

In(l— F)=—-Kecd

Nesta equacao, K ¢ uma constante de proporcionalidade. Mostre que,
para concentragoes préximas de zero, (p.ex., onde Kcd = 0,001), F
relaciona-se quase linearmente com ¢, enquanto que para valores mai-
ores de Kcd (p. ex., préximos de 2), quando dobra a concentracao, a
absor¢ao de luz ndo aumenta o dobro (a primeira situagao é analoga ao
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caso das moléculas traco que absorvem na regiao da janela, ao passo
que a segunda situagao é pertinente a absorcao do diéxido de carbono).
(Quimica ambiental, Colin Baird. ARTMED Editora S.A.)

Uma pessoa aplicou a importancia de R$ 500,00 numa instituicao bancaria
que paga juros mensais de 3,5%, no regime de juros compostos. Quanto
tempo apos a aplicacao, o montante serd de R$ 3500,007

Solugao:

M=C-(1+1i)
M: montante; C: capital; ¢: taxa; t: tempo
3500 = 500 - (1 + 0,035)"
3500
500
1,035" =7
t-log1,035 =1log7
. 0,8451

0,0149
t = 56,7

= 1,035

O montante de R$ 3500,00 serd originado apds 56 meses de aplicacao.

Em uma determinada cidade, a taxa de crescimento populacional é de
3% ao ano, aproximadamente. Em quantos anos a populacao desta
cidade ird dobrar, se a taxa de crescimento continuar a mesma?
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Solucao:

Populacao inicial = Fy

Populacgao apés t anos = Py - (1,03)" = P,
Supondo que a populagao dobrard em relacao ao ano-base apds t anos:
P =2-F

Py (1,03) =2 P,

1,03" =2

Aplicando logaritmo

log 1,03" = log 2

t-log1,03 =log?2

t-0,0128 = 0,3010

t =0,3010/0,0128

t =235

A populagao dobrard em aproximadamente 23,5 anos.

Determine o tempo que leva para que 1000 g de certa substancia radio-
ativa, que se desintegra a taxa de 2% ao ano, se reduza a 200 g. Utilize
a expressao:

Q = Qp-e ", em que (Q é a massa da substancia, r é a taxa e t é o
tempo em anos.

Solucao:

Q=Qy-e "

200 = 1000 - e~ 0%
200/1000 = e~ 0
1/5 = o—0,02t

— 0,02t = In(1/5)

— 0,02t =In1—1Inb

— 0,02t = —1Inb
0,02t =1In5

t =1n5/0,02

t = 1,6094/0,02
t = 80,47

A substancia levara 80,47 anos para se reduzir a 200 g.
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Um estudo sobre o crescimento médio de criancas, com idades de 1 a
12 anos, obteve a férmula h = log(10%7 - v/i) , onde h é a altura, em
metros, e i a idade, em anos. Por esta formula, qual seria a altura de
uma crianca de 10 anos?

Solugao:

h = 1log(10%7 - /)

h =1og10°7 + log Vi

h = 0,7log 10 4 log v/10
h = 0,71og 10 + log 102
h = 0,71og 10 + log 102

1
h=0,7+ -
o+ 5
h=12m
sen (2 —x)-cos (% +uw k
Simplifique a expressao: y = (2 ) (2 ) s r £ —W, kelZ
sen (g+x)-cos(g—m) 2
Solugao:
T T
sen (5 — x) = COS T; COS (5 —|—a:> = —senxw
T T
sen (5 +x> = COS X; COS <§ — m) = senzx

cosx - (—senx)
y: :—1
COST - senx

OBS: As fungoes seno e cosseno estao defasadas entre si de 90°, sendo
que a funcao cosseno esta adiantada de 90° em relacao a fungao seno.

Em um sitio sao criados coelhos e galinhas. Em certo momento, no
total, estes animais somam 50 cabecas e 140 pés. Qual a razao entre o
nimero de coelhos e o niimero de galinhas?

Solucao:

C' coelhos; G: galinhas
C+G=50— —2C —2G = —100

c 2
AC+26 =140 —20=40 — C=20— G =30 — 5 =1

@
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Numa subtragao, a soma do minuendo com o subtraendo e o resto vale
412. Qual o valor do minuendo?

Solucao:

Minuendo: M; Subtraendo: S; Resto: R

412
M+S+R:2M—>M:T:2O6

Uma torneira enche totalmente um certo tanque em 2 horas, enquanto
o ralo deste tanque pode esvazid-lo em 5 horas. A partir da condigao
do tanque vazio, ambos foram abertos simultaneamente. Apds 3 horas
de funcionamento, o ralo entupiu por completo. Apds o entupimento,
em quanto tempo o tanque transbordara?

Solugao:

Q: vazao (volume/unidade de tempo); V: volume total; ¢: tempo; Q; :

vazao para o interior; (). vazao para o exterior; V; : volume introduzido
apos 3 horas; V. : volume retirado apés 3 horas.

v
Q=5
Apo6s 3 horas:

% 74 15—-6 9

Vi-V.=Q; t—Q, t=—-3——-3="—".V="1V
¢ Ql 2 5 10 10

Resta o volume de 0 V', cujo tempo para encher, com o ralo entupido,
sera (lie: y

=V = 1 2 1

107 _ 10 _ _ _ :
t—a—g—l—O-I—ghora = 12 min
Ou:

: . ) |4
Considerando que em uma hora, a torneira enche meio tanque: > e

) V
que em uma hora, o ralo retira do tanque: =

V V
) ——3. — =
(3+1) 5 3 5 V

1
t= = hora = 12 min

Um reservatorio na forma de um cilindro circular reto, com o raio da
base e altura, iguais a 1 m, contém 15 L de 4gua e devera ser completado
com agua fornecida por uma torneira cuja vazao é de 5 L de agua
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por minuto. Qual o tempo para encher completamente o reservatério?
Solugao:

V,: volume do reservatério = mr?h = 3,14 m® = 3,14 - 1000 litros = 3140 L
3140 litros — 15 litros = 3125 litros

3125 litros + 5 litros/min = 625 min

625 min + 60 = 10h e 25min

36) O numero maximo de latas cilindricas de 8 cm de altura e 3 cm de raio
que podem ser guardadas em uma caixa cibica de 1 m?® de volume,
corresponde a?

Resposta: 3072

37) A Alometria estuda a relagdo entre medidas de diferentes partes do
corpo humano. Segundo a Alometria, a drea A da superficie corporal de
uma pessoa, relaciona-se com a sua massa m pela formula A = k - m%,
em que k é uma constante positiva. Considerando que no periodo
que vai da infancia até a maturidade de um individuo, sua massa é
multiplicada por 8, por quanto sera multiplicada a drea da superficie
corporal?

Solucao:

Wl

A=k-mieS=k-(8m)i =k 8% -m

Entao:

S k-8 -ms

2 g = ()i =2 =4 5=4A
A k.m§

38) A magnitude de terremotos é medida numa escala denominada “Escala
Richter” que possui uma pontuacao de 0 a 9 graus. A magnitude
em graus, nessa escala, ¢ o logaritmo da medida da amplitude das
ondas produzidas pela liberagao da energia do terremoto, medidas por
sismografos, segundo a férmula:

M =log A —log Ay, onde M é a magnitude, A a amplitude maxima, e
Ap uma amplitude de referéncia.

Para calcular a energia liberada, usamos I = 3 log (E)’ onde [ varia
0
de 0 a9, e Eé a energia liberada em kWh, e Ey = 7 - 1072 kWh.

Perguntas:
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a) Compare as magnitudes de um terremoto de 6 graus de magnitude,
com outro de 8 graus de magnitude, na escala Richter.

b) Calcule a energia liberada por um terremoto de grau 6 na escala
Richter.

Solucao:

a) My — My = (log A} —log Ag) — (log Ay — log Ap)
1 Ay

A
6—8:lOgA1—IOgA2—>—2:10g (—) —>1072:_HA2:100A1
Ay Ap

E

2 E E
) 6=3los (7~ 10—3) o8 <7~10—3> 7-10-3

E =7-10°%WH

39) (FUVEST) A soma e o produto das raizes da equagao do 2° grau (4m+

40)

3n)z? — bnx + (m — 2) = 0 valem, respectivamente, 5/8 e 3/8. Calcule
o valor de m + n.

Solucao:
5n 5 m— 2 3
:—e—:_
dm+3n 8 4m+3n 8
5n 5 4
=—- —8n=4m+3n —dn=4m —n=-m
dm +3n 8 5
m — 2 3 m— 2 3 5m — 10 3
dm+3n 8 4m—|—3~§m 8 20m+12m 8
Sm—10 3 5m — 10 10
—_— == — = —10=12 = ——
— 59 8—> i 3— 5m 0 m-—m 7
. o +4 9 9 10y 18
m4n=m 5m—5m—5 - ==

(PUC-MG) Os ntimeros “m” e “n” sdo raizes da equagao x® — 2rx +
r?2 —1=0. Qual é o valor de m? 4 n??
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Solugao:

m+n=2r

m-n=r2—1

(m +n)* = m? + 2mn +n?
(2r)? =m? +2(r* = 1) +n?
47 —2r* +2 =m* +n?
2(r? +1) = m? + n?

r+6 < —4

41) f(z) =49 V16—2? —d<z<4

6—=x 4 <z

A fungao é descontinua em v = —4 e x = 4 Nao é possivel tornar

continua pois x—)l%I}}l)_ f(x) ;é hm f(x) ( ) # hm f(x).

r—2 sex <0
42) F(x) =4 0 sex =0
24+1 sel<zx
Dr=R
Im(F) =] — oo, —2[U[2] U]2, +00]
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Y
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Ymin = —

25

A 9+16
ymln 4@ - 4
Y
_1‘\\ O
25
4

99
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Capitulo 3
Limites

Limite de uma variavel

Dizemos que um ponto x, pertencente ou nao a um conjunto D, é limite da
variavel x de D, se para qualquer intervalo aberto centrado em xzg, © — xg
em valor absoluto, possa se tornar sempre menor do que uma quantidade
qualquer. Entao, a variavel x tera como limite finito o ntimero zy, quando,
fixado um nimero 6 > 0 tao pequeno quanto se queira, tenhamos:

T—290<0 ou Tg—O0<x<x9+0

Dizemos que z tende para zy (notacdo: z — xg) ou que o limite de x é

(notagao: lim x = xg).
T—T0

A variavel z pode tender para xy por valores superiores a xg ou por
valores inferiores. Dizemos que xg ¢ o limite da variavel a direita ou limite a
esquerda, respectivamente.

Considerando o conjunto D, o ponto xy com as caracteristicas descritas
acima, também é denominado “ponto de acumulacao”.

Quando o conjunto D da variavel x for tal que, para M tao grande quanto
se queira, tenhamos x > M, dizemos que o limite da variavel é infinito

(notagao: © — +oo; lim x — foo ou lim z — Fo0).
r—+00 r—=+00

3.1 Limite de Funcoes Reais de Variavel Real

3.1.1 Limite finito

Seja uma fungdo y = f(z) definida em um intervalo (a,b) e seja rg um
ponto de acumulagao em (a,b). Dizemos que a fungao tem limite finito [,
quando a variavel tende para x(, se para cada numero € positivo, existe em

101
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correspondéncia com €, um numero 9, tal que, para 0 < x — xg < J, se tenha
f(x) — I < e. Representamos, pela desigualdade de Cauchy:

lim f(z) =1 <= Ve>0,36>0(z €D \0<z-20 <5 = f(zx)-l<e
T—x0

OBS: Reforcamos que xy pode pertencer ou nao ao dominio D da funcao f.
Entretanto, se zy € D, entao f(xy) pode ser igual ou diferente de .

Por outro lado, seja y = f(x), definida em (—oo,+00); se a varidvel x
tem limite infinito, y tera para limite finito o valor [, se para cada € positivo,
existe em correspondéncia com €, um numero M tal que, para x > M se
tenha f(z) — 1 <e.

Representagao: lim f(z) =1ou lim f(z) =1, se caso se tenha, respecti-
r—r+00 T—r—00

vamente, x positivo ou negativo.

3.1.2 Limite infinito

Seja uma funcao y = f(x) definida no intervalo (a, b) e xy pertencente ao in-
tervalo, um ponto de acumulagao. Dizemos que y = f(x) tem limite infinito,
quando z tem limite finito z(, se para cada nimero positivo M, existe em
correspondéncia com M, um nimero positivo § tal que, para 0 < x —xg < 0
se tenha f(x) > M.

Representagao: lim f(x) = 4oo, conforme f(z) tenda para infinito por
T—T0

positivos ou negativos.

Por outro lado, seja uma func¢do y = f(z) definida em (—o0,4+00). Dize-
mos que a funcao tem limite infinito, quando a variavel x também tem limite
infinito, se para cada M existe em correspondéncia com M, um ntmero M,
tal que, para x > M se tenha f(z) > M.

Representagao: lim f(x) = £o00, ou lim f(z) = too.
T——+00 r—

—0o0

3.1.3 Propriedades Fundamentais dos Limites

1) O limite de uma constante é a prépria constante.

2) Uma fungao uniforme y = f(z) nao pode ter dois limites distintos num
mesmo ponto.

3) Se lim f(z) =1 # 0, a fungao f(x) tem o mesmo sinal de [ para
T—T0

l—e< f(z) <l+¢ (e>0).

4) Se duas fungoes f(z) e g(z) tém valores iguais para 0 < z — zp < 0,
(0 >0), se lim f(z)=1, entao, lim f(z)= lim g(x) =1l
T—rT0 T—T0 T—rT0
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5) Sejam f(z), g(z) e ¢(z) fungdes de = definidas em (a, b) e o um ponto

de (a,b), se
(I) lim f(z) = lim g(z) =1
T—T0 T—T0
e

(1) f(x) < p(z) < g(2)

para todo ponto de (a,b), diferente de xg, entao: lim p(z) = I.
Tr—TQ

Simbolos de indeterminacao:
0 00
oco—o0; ocox0; =3 —: 00
0 00
Exemplos:

1) s=ax*+x;t=2>+1,. lim(s+1t) =00+ 00=00

T—00

2) s=2t=—z; lims+t=2—00=—00
T—>00

3) s=x+z+1;t=2—5. lim s Xt =400 X +00 = +00

T—00
2 2
4) lim V2 —£:

:v—>+oox—|—1_ o0

0

1

5) lim 4 = — mas
T—+00 =2

=z .. lim =40
r—-+00

leulﬁg [—=

6) lim (2 +x+1)" = 400"

T—r—+00

1 xr
7) lim <—) =0t =0

T——+00 €T

1 —T

Tr—+00 €T

V2
9) lim (-) = 07V2 = 40

Tr—+00 €T

OBSERVACAO:
Denomina-se funcao algébrica racional inteira, funcao polinomial ou po-
linomio, a expressao abaixo, com n positivo, e a, # 0.

f(x) = anmn + anfli[fni1 + Gn72$n72 4+ ...+ a1x + agp
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De acordo com limites, o limite da funcao algébrica racional inteira, f(x),
quando  — a, é f(a), ou seja, lim f(z) = f(a).
Tr—a

O limite da fungao racional inteira f(z), quando x — oo, é igual ao limite
do termo de mais alto valor f(z).

Demonstracao. Colocando a,x™ em evidéncia, fica:

£(2) = apa” (1 +

+ 2 + ...+ 3 +
Ay, X apnx Apx™ A"

Ap—1 Qp—2 a1 Qo )

A expressao entre parénteses tende para 1, entao:

lim f(z) = lim a,z"
Tr—00 T—r 00

Exemplo:
1) lim 22 —5x+9= lim 22? = +c0
r—400 T—+00
2) lim 22+ 7r—1= lim 2= —o0

3.1.4 Limite de uma funcgao racional:

Assim como as funcoes polinomiais, funcoes racionais sao casos particulares
das fungoes algébricas, as quais envolvem as operagoes algébricas (adigao,
subtracao, multiplicacao, divisao, potenciagao e radiciagao).

f(x)

Seja y = ﬂ uma funcado racional, na qual f(x) e g(z) s@o polinémios
g(x
racionais inteiros. Entao: ) fa)
x a
Se lim f(x) = f(a) e limg(x) = g(a) #0 = lim ——= = )
i fx) = fla) e lim glx) = g(a) @) g(a)

Tr—a g

Exemplo:
. 2?+3r+5 14345
lim = =

= —1
=132 -2 —8 1—2-—8

Caso haja indeterminagao no ponto:

Forma indeterminada: %

Se f(a) = g(a) = 0, teremos lim J@) = 8

=a g(z)

Se dividirmos ambos os membros por (z — a), obtendo fi(z) e ¢1(x) como
quocientes, temos:

TGO T A1 CO N 1C))

z—a g(CL’) z—a g (17> g1 (a> .
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Caso fi(a) = g1(a) = 0 devemos dividir fi(a) = g1(a) = 0 por z —a, achando
fa(x)

o limite lim , € assim sucessivamente.

z—a go(x)

Exemplo:
. 20 —dx +2 0 . 22 —4dx 42 , 2+ 1)(z —1)
lim = —, mas lim = lim =
so1gd —a2—z+1 0 eolpd — a2 —x+ 1 a1l (x+1)(z+1)(x—1)

2 2
lim =—-=
z—1x + 1 2
Forma indeterminada: 22

n n—1

Seja obter lim _f(x) = lim 2% e G e e e R0

z—+o0 g(gj) a—+00 by ™ + by x™ L+ ...+ bix + by 0

Para eliminar a indeterminacao, fazemos:

Ap— 1 A — 1 1 1
lim anx" 1+ anl.E_I— an2.a:_2+"'+s_n'm"*1+g—2.z_" — f($)
b0 by el Ly e gy g e L e g(2)
x ) anx™ X anx™
Quando x — 400, temos: lim @) = lim —— 1= lim —— =
T—>Fo00 g(x) z—+o0 b, x™ z—+oo b, x™
lim —a" ™™
r—+o00 bm
Temos trés casos possiveis:
. , x a
i) Cason =m; lim f@) _ an
.. x a
ii) Cason <m; lim @) g™ = ()
z—+oo g(:p) b,m
flx) _ an

""" = +o00

iii) Caso n > m; xgrfoo @ b

a .
Neste caso, podemos escrever que f tem limite — no infinito, ou seja:
m
x a x a
@) S

rtoe g(@) by e g(@) b

Exemplos:
523 + 21 — 1 53 5
1) lim —— =™ ~ " —_-=45
) x—1>I-iI-1c>o 3 —3x2+7 3 1
2 —x+2 x? 1

2) I = —
) oo 33+ 222 +3x+5 323 3z
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i 3x5 4+ 2x —3 32
11m g 11m _ = _OO
w—+oo =203 + 22 + 3x  woto0 —2

3+ 8 .z N
im ———— = lim — =4
e—to0 302 +5r + 5  z—+oo 3
a2ty
lim — = lim z* = 400
z—o—o00 T —p —1 T——00
35 4+ x . 3z
= lim — = -0

:L"%anoo 204+ 3 g0 2

3.1.5 Alguns limites fundamentais:

)

sen
=1

lim
x—0 x

Verifica-se que a razao ***, tende para a unidade, quando z se apro-
xima de zero.

Demonstrac¢ao. Considerando a figura , seja x o angulo central AOP
no circulo unitario (r = unidade).

Entao:

— O arco AP =z, e o setor OAP = %x;
— A desigualdade AOMP < setor OAP < AOAQ é equivalente a:

1 1 1
3senz-cosx < 3 < 5tgw.

L. 1 T 1 1
Dividindo por 3senz, temos: cosz < < — >
sen x Cos T cos T
sen x
> COST.
x

Quando z tende a zero, tanto cosx como $ tendem ao limite, que
¢ 1, e portanto, como 22 estd compreendido entre ambos, podemos

afirmar que:

sen
=1

lim
r—0 €x
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Q

1 _
2) lim — 2% —
z—0 Ssen xr

. . - T
Da trigonometria, temos a expressao: 1 — cosx = 2 sen2§.

_ 1l—cosz 2sen®% T sen g
Entao, = = sen —

X
T T 2 5

x x )
Quando z tende a zero, 5 e sen 5 também tendem a zero, e portanto,

X
15
X

2

1—cosz

Entao, podemos concluir que: lim —— = 0.
z—0 €T

tende ao limite 1.

pela deducao do item (1) anterior,

3) Numero e (dado):

1 xX
lim <1 + —) =e;
T——+00 T
e = 2, 71828 base do sistema dos logaritmos naturais (logaritmos nepe-
rianos).

Exemplos:

1
1) lir%(l + x)% = ¢; realmente, fazendo x = —, quando x — 0, z — o
T— Z

1\?

Z—00 z—+00 z
. AN .
2) lim (14— | =€~ k real relativo.
T—00 €T

. k k
Demonstracao. Fazendo — = z, temos x = —; quando x — oo, z — 0
x z
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k 1k
z z

Slim(1 4 2)= = lim(1 + 2)

z—0 z—0

T—00

) E\* e 1
3>J:%o<1—;) N

1 z+k 1 T 1 k
4) lim <1—|——) = lim (l—i——) -(1+—) =e-l=e
T—00 x T—00 X x

k x
Mas, lim(1 + z): = e = lim <1 + —) = lim(1 + z)%k = ¢V
z—0 X z—0

1 ]_ 1 1
5) lim Il +2) =limIn(l1+2): =1In <lim(1 + x)5> =lne=1
x—0 €x x—0 x—0
. Inz
6) lim ; fazer t =u+1; quando x — 1, u — 0
x—1 p — 1

. Inz o o lnu+1
o lim = lim
z—=1p —1 u—0 U

=1, de acordo com o exemplo (5), acima.

xT
=Ina

a
7) Mostre que lim
z—0 x

Verificamos que a expressao representa uma indeterminacao, pois,
a®>—1 1—1 0

glcig(l) =0 = (indeterminagao)
1 1 T—1
Fazendo a* = 14+ - — x—lOga(1+_) — @ _
x x x
1+1—1 . a® — 1 1
= = ;ou = 7
log, (1+2)  log, (1+21) alog, (1+1) T log, (1+ 1)
r—1 1
L lim a4 = — pois, quando x — 0, n — 0o
=0 X Ine
r—1
Mas, log,e x Ina =1 .. log, a = —lna = lim~ =Ina
log, e a0 T

3.1.6 Limite de uma funcao a direita de um ponto

Seja y = f(x), definida em (a,b) e xop um ponto de (a,b). Diz-se que f(x)
tem limite a direita, [, quando a varidvel x tem limite a direita, x(, se para
cada € positivo, existe em correspondéncia com €, um numero positivo ¢ tal
que, para To < x < xg + 0, se tenha f(x) — 1 <e.

Representacao: lim f(x) =1
r—zd
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T 1
Exemplo: llm —— = —

3.1.7 Limite de uma funcao a esquerda de um ponto

Seja y = f(z) definida em (a, b) e xy um ponto de (a,b). Diz-se que f(x) tem
um limite a esquerda, [, quando a variavel x tem limite a esquerda, zq, se
para cada e positivo, existe, em correspondéncia com €, um nimero positivo
J, tal que, para g — 0 < = < x, se tenha f(z) — [ <e.

Representagao: lim f(z) =1
=T

OBS: os limites laterais, ou seja, limite a esquerda e limite a direita, podem
ser distintos ou nao. E condigao necessaria e suficiente para que exista o
lim f(x) num ponto, que os limites existam e sejam iguais.

3.1.8 Funcao continua

Diz-se que uma fungao y = f(x), definida em (a, b) é continua em um ponto
xo de (a,b), se:

i) existe lim f(z), e é finito;
T—T0

i) lim f(x) = f(xo)

T—T0

Diz-se que f(z) definida em (a, b) é continua nesse intervalo, se for continua
em todos os pontos de (a,b).
Resumo: Uma fungao f(z) diz-se descontinua em um ponto a, se a0 menos
uma das condicoes abaixo nao forem satisfeitas:

i) f(x) é definida em a
ii) Existe lim f(x) e é finito
r—ra

i) lim f(x) = f(a)

Exercicios:

1) Determinar os limites, sendo n inteiro e positivo:

Solucao: lim
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1
b) lim —
1
Solucao: lim nz—i— = lim o 0
n—oo N + 3 n—o00 7’L2

¢) lim (vV2n+1—+2n—1)
n—o0
Solucao: lim (v2n+1—+v2n—1) = lim (vV2n+1—+2n—1)x
n—oo n—oo

2 1 2n—1 1
vantlevinol g — lim 2 x
Von+14++v/2n—-1 nooo Vo2n+14++v2n—1  nooo
1
— =0
00
1
d) limz - —
z—0 xT
1
Solugao: limx - — = zero X numero entre —le +1=0
z—0 T
e) lim e
z—0—

. . i -
Solugao: lim e2z =e > =0
z—0~

.1
f) lim ezs
x—07F

1
Solugao: lim ez = et = oo

z—0t
. T
g) lim —
=0T T
. . T X
Solugao: lim —=—=1
e—=0t T X
.o
h) lim —
=0~ T
. . x
Solugao: lim — =——=—1
z—0" X T

4 _4
hm\/_—\/ﬁ
=3 T —3

4/ 4 _ _
Solugao: limM:lim Ve \/§4 = lim VT \/54 X
=3 r—3 z—>3$_3%+\/§ x—>3x_3\4/§+\/§
M—lim 1 — lim 1 _
VI+V3 e B Y+ VB3I +V3 a3 3+ V3V3+V3
1 1 1 V3 V3

1
llm == 1 T = = X —_— —_—
v=32/324/3  4.33.327  4.3%7 4P V3 12
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2)

Sejam A, a area e p o perimetro de um poligono regular de n lados. Se
n cresce e p permanece constante, achar lim A,.

n—oo
Solucao:
A, =7r% p=2mr = r=2
27
Entao, a area em funcgao do perimetro, vale:
2 2
p p
Ay =1—="—
" 472 4xw

O segmento de reta AB de comprimento [ é dividido em n partes iguais;
constroem-se sobre cada parte, como na figura, triangulos equildteros.

Se S, é a soma dos perimetros, achar lim .S,,.
n—oo

Solugao: Os valores de [ e n, estao relacionados a figura abaixo.

[
Paranzl,temosSlzlng:&

3l
Paraan,temosng2><§:3l

3l
Paran:3,tem0853:3><§:3l

Conclusao: lim S, = 3!
n—oo
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Capitulo 4

Derivadas

O problema das tangentes a graficos.

A tangente (geométrica) ao grafico a fungao y = ax*+bx+c, no ponto (o, yo),
¢ a reta que passa por (g, Yo), com inclinacdo I,, = lim,_,,, m,, onde m, é
a inclinagao (tangente trigonométrica) da reta secante, pelos pontos (zo, ¥o)
e (x,ax?® 4+ bx + ¢), com (x # x4). Veja a representagao no grafico abaixo:

Y

Yop----------

az® + br + ¢ — axd — bxy — ¢
my = ,x#xo
T — Xo
2 2

ar” —arg +b(xr —x

= 0+ ( 0)7567&'%‘0
r — X9

= a(x + x9) + b, x # x¢

=ax + axg+ b, x # xg

Quando z — xg, teremos, no limite:

y = 2axg+ b

113
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O grafico de y = m,, é¢ uma reta faltando um ponto:

2009 +bpr----------

axrg+b

Teorema 4.0.1. Seja (x,y) um ponto do grdfico de y = ax®+bx+c. Entao,
a inclinag¢ao da tangente ao grdfico, em (x,y) é:

I, =2ax +0

Resumo do conceito de derivada de uma funcao:

Para cada = da funcao f(x), o valor de f'(z), é a inclinagdo da tangente
(geométrica) ao gréafico de f(x). A fungao f'(z) é a derivada de f(z), ou
seja:

o)t T = F)

T—x0 xXr — SCO

Exemplo: Tracar o gréfico aproximado (visual) da derivada da fungao abaixo
emz =0, f(0)=0

emz =1, f(1)=-1

emz = —1, f'(—1)
para z > 0, f'(x
para x < 0, f'(x
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\
—
-

OBS:

f(x)—f(z0) tende
—

a) A derivada sé é definida num ponto zy quando lim
T—T0

para o mesmo valor, quando z se aproxima de x, tanto pela direita
como pela esquerda. Entdo, no caso abaixo, a fun¢ao f(z) = x nao
tem derivada em x = 0. Portanto, o Dominio da funcao f’(x), ou seja,
D(s), nao contém o ponto zero.

b) O Dominio de f’ é o conjunto de todos os nimeros = para os quais a
funcao original apresenta uma tangente nao vertical.
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Toda corda ligando dois pontos

Teorema 4.0.2 (Teorema do valor médio).

de uma funcao diferencidvel, € paralela a tangente em algum ponto inter-

medidrio.
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OBS:

A funcao f nao
¢é diferenciavel em

[a, b].

I
I
I
!
b x

4.1 Processo de Diferenciacao

Seja Df a derivada de f — Df = f'.

Seja hlx) = f(x) + g(x) = D(f +g) = I

Entdo: D(2? 4+ 2z + 5) = 2z + 2.

Quando afirmamos que f é diferenciavel, estamos dizendo que f tem uma

derivada em cada ponto de seu dominio.

Teorema 4.1.1. A derivada da fun¢dao constante vale zero.
Sendo k, uma constante, Dk = 0.

Demonstracao. f'(xg) = lim M — lim k—k -
T—X0 r — T z—=x0 T — X

0

Teorema 4.1.2. Se [ € diferencidvel, entao kf também serd, para todo k.
D(kf) =kDf

Demonstracao. lim M = f'(z0) — lim kf(x) — kf(xo)

T—x0 T — X T—T0 T — Xy

= kf'(wo)
Exemplo: D(ka?) = 2kx

Teorema 4.1.3. Se f e g sao diferencidveis, entao f + g também € dife-
rencidvel e: D(f +¢g) = Df + Dg

Demonstracao. li_>m [f(z) + g(x>i;_—[£(x0) + g(wo)]

= f'(wo) + g' (o)
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Teorema 4.1.4. Dz™ = nz"~! para todo n inteiro positivo.

Para a demonstracao do teorema, utilizaremos a igualdade abaixo:
n n __ n—1 n—2 n—2 n—1
=g =(r—xo) (2" 2" g+ ... F T  Hxl)

Demonstracao. Seja f(x) = x", entao

R Lo L Co(r—x) (@ a2 4 a4t
f/(:E) — hm 0 — llm ( 0)( 0 0 0 )
z—=xo T — X T—x0 r — Xy
= xlgg (2" 2" 2w+ a4l
0

— f'(zo) = nad™t — Da™ = na"?
Teorema 4.1.5. Se f ¢ diferencidvel em xq, entao f € continua em gy, ou
seja, im f(x) = f(zo).

T—T0

Teorema 4.1.6. A derivada do produto de duas funcoes, € a derivada da pri-
meira multiplicada pela sequnda funcao, adicionada a primeira multiplicada
pela derivada da sequnda.

D(f-g)=f-9g+f4d

Demonstracao.

=ty FE e
_ iy T®) - 9(@) = f(wo) - g(2) + f(wo) - g(2) = f(20) - g(0)
o @)~ Fale() + lgt) — gl (o)

= f'(z0) - g(wo) + f(z0) - ¢'(20)

Teorema 4.1.7. Deriwada da fun¢do reciproca g(x) = %
oy 9@ = g(w) T
g (370) N IILHLBO T — X n $llg310 T — X
T f(zo) — f() T f(x)—f(xo). —1
N xligclo f(z) - fzo) - (x—x0) xligclo T — X f(z) - f(xo)
/ . —f/(xo)
I = G

1 —f
:D<?) = ?,comf(x) # 0
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Teorema 4.1.8. Derivada do quociente de duas funcoes diferencidveis:

D(i) :f/-g—Zf-g’
g 9

Demonstracgao. D<§> =D(f) - é +f-D <§) = fg +fo=g = Lot
Teorema 4.1.9. Sen é um inteiro positivo, e f € uma funcdo diferencidvel,
entao D(f") = nfr L f’

Demonstracao. Seja g(x) = f™(x)

Jr (@) = [ (o)

(eo) = Jim ==
o H@) = f@)] [ @) 4 @) f (o) - 7 )]
= ngz;z;igfgz‘QPE;[f"_1¢f>4-1“’2(x)f(mo)4—...+-f"-1(xoﬂ

T—x0 €Xr — mo

—>¢'(z0) = nf" (o) - f' (o)

OBS: Caso n seja negativo (n = —k, com k > 0), a mesma férmula serd
vélida, em todos os pontos onde f(z) # 0.

D(f") =D(f™) = D(%) = —kf" % = —kf T =nfrf

Resumo:
(a) Dk =0
(b) D(kf) =kDf
(c) D(f +9) =Df +Dg
(d) Da™ = na™!
() D(f-g9)=f"-9+f ¢

0 D(}) =7 70
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(®) D(g) )
(h) Df" =nfrtf

/

(i) DyVF=Dfz = Lfatp=1pap = _

2V f
Exemplos:
1) D(721% — 2%) = 702° — 827
1 —1
2) D =
) (:13—1—1) (x +1)2
3) D x 1@+ 1) 21 x4+l-z 1
r+1) (z+1)? (412 (z+1)2

1 o —(22) -2z
00()

5) D( y ):1-(y3—3)—y-(3y2)_y3—3—3y3_—2y3—3

y? =3 (y* —3)2 W32 (P

6) D(Ty* — y* + m) = 28y® — 2y

7) Do(a®y + ay® + ay?) = 32y + y°

8) Dy(2%y + ay® + xy?) = 2* + 3ay® + 2y

9) Du(23y + ay® + zy?) = 32

10) D[(z?—z+ D) (2®+z2+1)] = e -1 (2®’+z+1)+ (22 —2+1)(2z+1)

1) D(xi—x—i—l) _ 2z —1)(2*+z+1)— (2 —z+1)(2x + 1)
2?2+z+1 (22 + 2+ 1)2

12) D(a;—i_l): 1-(23—2)— (x+1)(32% = 1) _ —223 — 32?2 + 1
-z (x3 —x)? (x3 —x)?

13) D[(z* + 2)?] = D(z* + 22° 4+ 2?) = 42® 4 62* + 22

Exercicios resolvidos:

1) Calcule por qualquer método:
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a) D\/(Jc +1)(z+2)
Solucao:
Dv/(z+ 1)(z +2) = D[(z + 1)(z + 2)]

= et DE 2 [ @42+ @) ]
1
e nary Y

2x 4+ 3
2¢/(z+1)(z +2)

b) D((x2 +2$:c+ 1)2)

Solugao:

T . f _f/g—fg/
D(<x2+2x+1>2) _D(§> e

1- (2 +2x+1)2—2-2- (2 + 22+ 1)(2x + 2)
(22 + 2z +1)*
(x4 1) —22(2z + 2)(x + 1)?

=

(x+1)8
(4D —dx(z+1)°  (z+1)—4z
B (z +1)8 ICERE
 —3x+1
(1)

c) D(@®+a? —x 4 7)™
Solucao:
D(@® +2? —o+ 7)™ =712(2 + 2 — 2 + 7)™ - (32% + 22 — 1)
r? -1
d) D
o(551)
Solucao:
2 !, /
p(* =1\ _p(f\_Ff9—1fg
x2 41 g g?
2 (2?4 1) - (2 —1)-2z 204+ 22—22° + 2
o (22 + 1)2 B (xQ + 1)2

B 4x
ERNE
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¢) DVVz

Solugao:

D\/>—D f= fondef NE

NG 1 1
D/ V7 =

2\/\/5 S/ 2\/ T WE
Dsenx
Solucao:

Dando a z um incremento Az, temos:

Ay = (y+Ay) —y = sen (v + Ar) — senr,
OBS: sen (a+b) — sen (a — b) = 2senb - cosa
a+b=x+Ax

a—b=ux

2 2
Ay  2sen (%) cos (a: + %)
Az Ax
Ay  sen (&2 N
Ay i 2 ) cos (x + %)

2
. Ay . sen %
i 5= Jim ") oo

= Dsenz = cosx, ou y = cosx

4.2 Regra da Cadeia (Derivada de Funcao de

Fungao)

Sejam as fungoes f e g, e a fungao f(g).

Df(g) = f'(9)d

=
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Exemplo: Calcule as derivadas.

1)

¢(z) = sen (3x + 1)

Expressamos como uma fungao composta:

¢(z) = f(9(z))
com f(u) = senu f'(u) = cosu
u=g(r)=3z+1 g (z)=3

= ¢(z) = Dsen (3x 4+ 1) = [cos(3x 4+ 1)|D(3z + 1) = 3cos(3z + 1)
y= V35

y=+/ucomu=2xr—5

e /: ,.uli /:—~’U//:—-2
1
e =
Y V2x —95
y = sendzr

y = senu com u = 4x
r_ / r r_
= y = (senu) -ul, =cosu-u, = cosdx -4

— ' = 4cosdx

1
y:
coS T
1
Yy = — cOm U = COS T
U
1 1
= Yy =—— u, =- - (—senx
4 w2 7 COSZ.T( )
,  senx
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5) y = sen’x

y = u? com u = senx

= Y =2u-u, =2senx-cosx

— 3y = sen2x

6) y = sen3z

y = u’ com u = senx

= y =3u?

— ¢/ = 3sen’z - cosx

Ny=e™
y =e" comu = —3zx
:> y, ey eu . u;: — 6_3‘7: . (_3>
= y = -3

8) y =log(l —4x)

y =logu comu=1-—4x

1 1
— /:—- /: -—4
e I — 4
4 o 4x—1
9) y=tg;

—_

y=tgucomu=-<

!/

— V= 2 - cos? (%)

Generalizagao:

Seja y = f(u) com u = p(v), v =g(2), z=h(t) et = j(x)
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Ay Ay Au Av Az Al
Ar Az Au Av Az At
Ay Ay Au Av Az At

Ar  Au Av Az At Az
Ay Ay Au

= lim — = lim — - lim — ...
Az—0 Az Au—m0 Au  Av—0 Av

AN
- yz_yu‘uv'vz'zt'tx

Exemplos:

1 1 1

1
/:/.u/_,U,:_,_._Sa’,‘: . '—4.T
o=Vt = g () = e e ()
= —4x
1 — 422

3) y=+/(sen3z —1)3
u=(senz —1)3=v
y=+u com{ v=sendr—1=2"—1
Z = senx

3

1
Y=y w02 = ——= 302322 cosx

2Vu

= -3(sen3r —1)* - 3sen’z - cos
24/ (sen3z —1)3
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= ¢ = Jsen?zcoszv/ sendy — 1

4) y = arctg (ﬁ)
1 1

y = arctgu com YT T T
v=1-—4z?

1 —1 1 8x
/ / / /
=y v =— . (—=82) = .
ya: yu uv Uz 1 ug UQ ( ‘T) 1 ( 1 )2 (1 41,2)2

1—4x2

o (T=4a2)? 8z
T (1 —4a2)?2 41 (T=4a?)?
= 8x

(1 —4x2)2+1

Lot o J W= sen (2z) = senv
Y v=2r
Y=y - ul v, =e"-cosv-2=2e*" (22) cos(2z)

4.3 Derivadas de Funcoes Implicitas

Uma fungao da forma y = f(x) é dita ezplicita quando y esta de um lado do
sinal “=" e x do outro lado.
Uma funcao implicita apresenta-se sob forma:

flz,y) =0
onde z é a variavel independente e y a funcao.

Exemplos:
x
a) 2ry — 7 =0
b) 2? +y* — R* =0

c) 4a* —2zy —y* =5y —1=0
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Calculemos as derivadas:

Z

i 0 em relacao a x:

1 -2

a) Derivando 2x2%y —

-2 /
4xy+2x2y’—%20
Yy

4oyt + 2223y —y+ 22y =0
Y (22%y° + 22) = y(1 — day’)
,_ y(1 —day?)
2z (xy3 + 1)
b) Derivando 22 + y* — R? = 0 em relacao a x:
2 +2y-y —0=0

2uy’ = —2x
, x
y=—--
Y

Neste caso, a equacao proposta poderia ser colocada sob a forma explicita:
¥ =R?>— 2% ey=+VR?—a?
(—2z) =

/ R

1 —

— Va2 VEE—2 g
c¢) Derivando 42% — 22y — y* — 5y — 1 = 0 em relagao a z:
4-2x)—2-1-y+2zx-y]—2y-y =5y —0=0

8r — 2y + 2xy —2yy' — 5y =0
y'(2z -2y —5) =2(y — 4z)
2(y — 4x)
2z —y)—>5

[

4.4 Aplicacoes das Derivadas
As derivadas nos auxiliam a determinar:
e Se uma funcao tem maximo ou minimo;

e Se uma curva, em um ponto qualquer, tem tangente horizontal, vertical
ou inclinada, o que da a posicao da curva neste ponto;
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e Se uma curva tem concavidade voltada para cima ou para baixo em
relacao ao eixo das abscissas;

e Se a curvatura em um ponto é grande ou pequena, etc.

4.4.1 Tracar curvas; Pesquisa de Maximos e Minimos

1) Inclinagao de uma curva em um ponto.

Yy = tga
Se ¥y >0 = angulo agudo
y <0 = angulo obtuso
y=0 = a=0oun
Yy =00 = a=73
1 1
Exemplo: y = —; ¢ = ——
x x
Se =0 Yy = —o0 a tangente é vertical
r=o00 Yy =0 a tangente é horizontal
r=—-1 ¢y =-1=tga =— a=135°
) '

2) Variagao de uma funcao.

Teorema 4.4.1. Se a derivada € positiva a funcdao cresce. Se a deri-
vada € negativa, a funcao decresce.

1 1
Exemplo: No casoy = —; ¢y = ——
EE— x x

y' é sempre negativa = y sempre decresce.

3) Determinagao de mdzimos e minimos.
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Teorema 4.4.2. Quando uma funcao y = f(x) passa por um minimo
ou por um mdzrimo, sua deriwada anula-se, mudando de sinal. E vice-

versa.
)
i Méximo
A
‘ =0
/K l \ T x
4) Pontos de inflexao.
Exemplo: y = (z —2)3+ley=—(z—2)*+1
) Y
x x

A tangente é horizontal nestes pontos mas a derivada nao muda de
sinal. Apenas a curvatura muda de sinal.

OBS: H4a também pontos de inflexao onde a tangente nao é horizontal.
Maximo ou minimo?
Primeira Regra:

Mdzimo quando y' é (+) antes de anular-se e (—) depois.

Minimo quando y' é (—) antes de anular-se e (4) depois.

Exemplos:

)y=a>-52+6 = ¢y =20r—-5=0 = |z =

DN | Ut
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Para z <

[\

por exemplo 0 = ¢ <0 = y \,

Para = >

N Ot

por exemplo 3 = ¢/ >0 = y ~

5

Portanto: y tem minimo em r = 3.

2) y= s ouy=(1—422)2=u>2
Y = —tuiu = —1(1 - 422) 73 (—8x)

’__ 4z _ — —
y—\/m—02>4w—02>

Pararz <0 = ¢/ <0 = y\,

Paraz >0 = ¢y >0 = y ~
Portanto y tem minimo.

B)y: L :>y:l:>y/:_i2.u’

senx u u

;1 A __ __cosxz __
y = senZg COST = senZx 0

— cosaczoeac:goux:%7T

Havera um maximo ou um minimo:
Para x < §,cosz >0 = ¢ <0 = y\
Para x > §,cosz <0 = ¢ >0 = y

s

2
Parax<37”,cosx<0 — >0 = y

—> Temos minimo de y para x =

Parax>37”,cosx>0 — Y <0 = y\,

3T

= Temos maximo de y para r = -

Segunda Regra:

DERIVADAS

Teorema 4.4.3. Se para o ponto onde se anula a derivada primeira, a de-
rivada sequnda € positiva =—> y passa por um minimo. Se a derivada

seqgunda € negativa = Yy passa por um MdAxrimo.

y" < 0, y passa por um mdzximo.

y" >0, y passa por um minimo.
Exemplos:

1) y=2*>—52+6



4.4. APLICACOES DAS DERIVADAS 131

y =2xr—5
y'=2 sempre (+) == Minimo
2) y= senx

_
/ T =73
y =cosx =0

_ 37

r=ry

Yy’ = —senx
Para x = 7, ¢y’ = —sen § = —1 Méximo
Para x = &%y = —sen 3 = +1 Minimo

Pontos de Inflexao

Sao pontos onde a concavidade da curva muda de sentido (a tangente a curva
atravessa a curva).

Teorema 4.4.4. Quando a derivada sequnda se anula em um valor de x e
Yy mao muda de sinal, tem-se um ponto de inflexdo e vice-versa.

OBS: Se além disso ¥ =0 = a tangente ¢é horizontal, e se iy = co —
a tangente é vertical.
Exemplo:

l.y=2® = ¢y =322 = ¢y =6x

y” anula-se para x = 0 e como y' é sempre positiva =—> temos um
ponto de inflexao para x = 0.

2. y=senzx = y =cosx = Yy’ = —senx
x=0,2m, ...
y" = 0 para
T =m, 37, ...

Para estes pontos a derivada primeira ¢y’ ndo muda de sinal = pontos

de inflexao.
N N e
y = senx | |
,1 ,,,,, = — — — [, z _

y’ = nao muda de sinal
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Aplicacoes praticas da determinagao de maximos e minimos

1)

Toma-se uma folha quadrada de papelao, de lado igual a a, para cons-
truir uma caixa de base quadrada e sem tampa. De cada um dos quatro
cantos, corta-se um quadrado de lado x e dobra-se as faixas restantes.

Calcular o valor de x para que o volume seja maximo.

Solucao:

/////

/////
v

Superficie do fundo vale %
S = (a —2z)*

Volume da caixa V=5 -z

V = z(a—2x)? = x(a® —4dar+42?)

=423 — dax® + o’z

Anulando a derivada primeira: N
V' =122 —8ax + a®> =0 <
_ 8a+V64a? —48a?  8a+t4a
= 24 DY
a a
— I1 = 5 ou Ty = 6

Derivada 2%: V" = 24x — 8a

a
Para z = B = V" =12a — 8a = 4a = V é minimo
a
Para xz = 6 — V" =44 —8a = —4a = |Vé mdzimo
a ..
Notar que para x = 5 nao ha caixa! —

Deseja-se fabricar uma panela de aluminio cilindrica por meio de uma
folha metélica de superficie S. Calcular a relacao que deve existir entre
a altura H e o raio R para que o volume seja maximo.

Solucao:

Volume (1) I@
H

<

R

Como H e R sao duas variaveis,
devemos expressar o volume em
funcao de uma sé variavel.

Superficie total: | S = mR* + QWRH‘ (2)
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S — 1 R?
de H=—— (3
onde 5 R (3)
(3) em (1) fica:
S —7R? R
_ 2 _ _ 2
V =nR ( SR ) 5 (S —7R7)
RS =wR?
= — — — = R
ST i)
Anulando a derivada:
S =31R?
S  3rR?
/ _— —_=
V5 = 5 5 0 — e

Substituindo S em (2) fica:

3rR* = TR* + 2nRH

2TR? = 2rRH —

Mdzimo ou minimo?? Vamos a V"

Vi = —31R <0 = MAXIMO de volume

3) Deseja-se fabricar uma lata de conserva cilindrica com tampa que, para
um volume V' dado, tenha o minimo de metal. Determinar a relagao
entre o raio e a altura.

OBS: E o problema da panela, com tampa e tendo volume dado.
Solucao:

Volume: V = nR*H (1)

Superficie total: S = 27R?* + 27 RH (2)

Vv
De (1) tiramos: H = T
% 2V
Em (2) fica: S =27R? + 27TR7T—R2 =2TR? + == f(R)
2V
S/ = 47TR — ﬁ = O
onde:
2V s/ V

4 = — - —

TR 7z © R o

{



134

CAPITULO 4. DERIVADAS

Igualando com (1) fica:

2rR* = tR*H —

Mdzimo ou minimo?
S" =4 2V(—2R3) =4 il
= dm —2V/(- ) = 4w+ g

sempre positivo = MINIMO de superficie.

Seja um pedestal de altura h sobre o qual estd colocada uma estatua
de altura a. A que distancia do pé do pedestal deve alguém colocar-se
para ver a estatua sob o angulo méaximo?

Haverda uma distancia AP = «
para a qual o angulo a é maximo,
o mesmo ocorrendo para tga.

x
tgo = tg(6-7) = o0 8T ()
a= —) =
& & 7 14 tgf- tgy
h h
Mastg9:a+ e tgy=—
x

Substituindo em (1) fica:
ath _ b _z(a+h)—xh

teq = —2 A
s L+ eth b g2 4 hia+h)
i}
B ax
YT 2 ah+ 2
,a(@?4ah+h?) —ax(2r) 0
V= (22 + ah + h2)? B
= 2 +ah+h?—22° =0
x = +/h(a+ h) |z éamédia geométrica entre a altura do pedestal e a

altura total.

Mdazimo ou minimo? Estudemos o sinal da derivada no entorno do
valor critico.

Para x < \/h(a+ h), por exemploz =0 = ¢ é (+) = y =
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MAXIMO de tg o e portanto MAXIMO de a.

Para z > y/h(a+h) = y é(—).

Um paciente recebe soro glicosado de um recipiente conico, a uma taxa
constante de 0,5 ml/min. Com que rapidez o nivel de soro esta baixando
quando sua profundidade for igual a 8 cm?
Verifique que o nivel baixa cada vez mais rapidamente a medida que a
profundidade diminui.
V' = volume do soro (em ml) no
instante ¢
x = raio da sup. do soro (cm) em
20 cm t
y = altura da sup. do soro (cm)
emt
V=V(t)
d
— = —0,5ml/min
dt /
s T 6 3y
V=="uo>¢ycom=-—=— — |z =22
g7 YO T o0 10
3T 4
~ 1007
Deriwando em relagao a t temos:
dV. 97 ,dy
dt — 100” dr

Sendo d_‘t/ = —0,5 ml/min = —0,5 cm®/min e y = 8 cm

i—i = —% ~ | —0,276cm/min
De modo geral tem-se:

dy 50

ar  Omy?

dy

{E} — 00 quando y — 0

Se, por outro lado, eu desejasse saber a taxa de crescimento do raio da



136

CAPITULO 4. DERIVADAS

superficie do soro:

xr 6 N 10
—_ = — = —X
y 20 Y773
V:z-?-m?’:lo{x?’
dV 107 dx
= .32 =
a3 7w
107 dx
—05= N —
’ 3 dt
dz 0,05 :
il cm/min

A concentragao de um farmaco no sangue, apds sua administracao por
via IM, em uma tnica dose, é dada por:

10t
yzc(t):t2+2t+1’t20

onde t é o tempo em horas. Determine os intervalos onde a concentragao
da substancia no sangue estd aumentando e onde estd diminuindo.

Solucao:
10t
= - t>
y=c) = migy0t20
10(t + 1) — (10t) - 2(t + 1
= ey = L0EH1? = (100 2(¢+ 1)
(t+1)
10+ 1)t 41— 2t
B (t+1)4
]_ —
_00-9 5
(t+1)3

y'>0quando t <1 (sempret > 0)
y < 0 quando t > 1

y tem mdrimo parat =1
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25|

4.4.2 Estudo da Variacao das Funcoes. Tracado das
Curvas

Seja

y = f(x)

Poderemos ver:
e se a funcao é (+) ou (—);
e se a funcao cresce ou decresce e com que rapidez;
e se a funcao ¢é nula ou infinita;
e se a funcao tem maximo ou minimo.
Procedimento:
1°) Faz-se x = 0, calculando-se y.

2°) Faz-se x = +oo, calculando-se y.

Se a fracao obtida para y for 22 = dividir pela maior poténcia de x
tanto o numerador quanto o denominador.

Faz-se y = 0, deduzindo-se z.

Faz-se y = oo e deduz-se z.

)
)
5°) Calcula-se 3’ e simplifica-se.
) Anula-se y'.

)

Estudar sinal de ¢’ para concluir sobre maximo ou minimo.
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8°) Se necessério calcula~se y” (maximo ou minimo: y”(+) = minimo e
vice-versa).

Fazendo 3" = 0 encontrar os pontos de inflexao.
9°) Desenhar quadro para variagoes.

10°) Tragar curva.

Exemplos:

1) Trinémio do 2° grau.
y=1*—5r+6
para z=0—y =46
r = txo0 —r y = +00
y = 0 para 22 — 52 + 6 = 0 donde z = +2 ou z = +3.

)
y' = 2x — 5 anula-se para x = 3

y" =42 = minimo de y.
Paraz <2,y <0 = y\,
Paraz > 2,y >0 = y
O valor do minimo é:

y=(3)-5-3+0--1

N
[N\
w

1
2) Sejay = —
T
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Paraz =0 Yy =00

Parax =+oc0 y —0
1

y/:—pzo

Serx =400 = 3y =0

Sex =0 = y =00 = y tende a vertical

y' é sempre < 0 = y decresce sempre

% 0 +00

Yy’ 0 — 00 _ 0
v] 0 N —o0 | +o0 N 0

Y

0

x
20 — 1
3 =
)y dr + 2
Para x =0 y:_%
=_4 2-1
=2 =7 — Fazer Y= =
Para r = oo Y ” 2 442
V=2 lim —1

1

y=0para2x —1=0 —= 1;25
1

y:oopara4x+2:0:>H
2 (o4 (-4 SF4d-SE+d 8
y = (4x + 2)? o (4z + 2)2 " Uz 1 2)2

Y = > —0IMPOSSIVEL — Nio h4 méximo nem minimo
(dz +2)?2
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Yy é sempre positivo = y cresce sempre

—00 —% 0 _|_% +00
y | + + + + + +
vy T 7 4% | —x ) -1 7 0 ) +1
\y I
|
\2 |
,,,,,,,,,,,,,,,, ;i,\,-_,,\,,,,,,,,,,,,,,,,,,,
2: L/"_'_/__
,,,,,,,,,,,,,,,,,,, s
/=
| 2
2z
4 =
)y 1+ 22

Parar =0 = y =0

Para r = oo = y = Z indeterminagao
2 2
— T _ x
Fazer y = — FER
? + P 2
limy =0
T—00

y =0 para 2z = 0 donde z =0

y = oo para 1+ 2? = 0 donde 2> = —1 (impossivel)

y = 2(1 + 2?) — 22(2x) _ 2+ 222 — 4a2? _ 2 — 222 ~ 0 donde
(14 22)? (14 22) (1 +22)?

r ==l

A derivada tem o sinal de: —222 + 2,

AXi -l<z<l1
maximo N (4) para x

trindmio que passa por ..
duep PO 51 minimo (—)paraz < —loux >1
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Ha um minimo para x = —1 e maximo para z = 1
-0 -1 0 +1 +00
vy - - 0 + 2 + 0 - -
Y 0 N -1 A0 /A 441 N\, O

Pontos de inflexao (anular y”):

" (—41’) : (1 + I2)2 — (2 — 2132) . 2(1 -+ 132) -2z

(1+22)4
 (T+a?) - (—4x) — 4z - (2 —227)
N (1+22)3=0
donde: —4z —42® — 8z + 823 =0 = 42® — 122 =0
z=0
4r(z®—3) =0 = { z=+V3
r=—/3
y o
””””” VA N
il
iR ’

5) y=ax3 = Va2

Paraz =0 = y =0
Parax = o0 = y = +o0
2

3V

Para x =0 = ¢’ = 00; a curva tende a vertical

W=

r_2,.—
Yy =37

Para x = 00 = 3’ = 0; a curva tende a horizontal

141
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Paraz < 0; ¢y <0 = y \
Parax >0,y >0 = y ~

T | —00 0 +o00
Yyl 0 — oo + 0
y|+oo N, 0 N 400
Yy
oo o0
x
0

6) Seja a fungao y = —2z* + 322 -5
Parax =0 = y= -5
Para r = +o00 = y=—00
y = —8x3 + 62 = 2z(3 — 42%) =0

z=0

= 0 e
Y { 3—42?° =0 = x = :I:‘/Tg(trinémio passa por um maximo)

y’<0para—‘/7§<:1:<0ex>

— + V3
R GO N GO .
3 — 4x? : : < —Y3
(=) () (=) y' > 0 para 2
0<ac<*/7g
_ 1V3 _ 31
Parax = +¥° = y=—%¢
—00 —§ 0 +§ ~+o00
Yy + 0 - 0 + 0 -
A S W B
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Yy
x
1
7) y= g(aH— 1)?(3z — 2)?

Para 9520:>y:‘§l
r=—00 = Y= —00
T=400 = Yy =400

— 0 var r+1=0=— z=-1

YZUPER 320 = 2 =2

1
y’:5[3(a:+1)2-(3:1:—2)2+(1:—|—1)3-2(3x—2)'3]

y = 3z —2)(z + 1)2[(3z — 2) + 2(z + 1)]

y =5x(3xr — 2)(z +1)?

, x:(Q) Para xr = +o0

y =0para ¢ = =3 .

x—3—1 y =00 = y vertical

y’<0para0<x<§
y >0paraz<0ex >3

—00 —1
+ 0 4+
y|—-o S 0

<
8

L O | O
I

O O win
+
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win

4.4.3 Foérmula de Taylor e Maclaurin

Dada uma funcao f(z), podemos escrever o valor da fun¢do em um ponto
xo + h se conhecermos o valor f(z), por meio de poténcias crescentes de h,
na forma de um polinémio:

’ " (x - $0)2
f(x) = f(xo+h) = f(xo) + f'(20) - (x — o) + f (%)‘T
_ 3 . n
+ " (x0) - —(x 3!330) + 4+ () —(:1: nlxo) + R,
Yy
f(o+h) p---m-2 :
f(xo) *”: i
T 29+ h o
h

Demonstragao. Suponhamos que f(x) seja diferenciavel no intervalo [z, o+
h| e possui derivadas sucessivas tnicas, finitas ou nula em niimero ilimitado
no intervalo. Admitamos a possibilidade de escrever:

f(l') = A(] + A1<I — 370) + AQ(ZC — 1'0)2 + Ag(.ﬁC — 1'0)3 4+ ...
= An(l' — ZL’())n + An+1(l' — $0)n+1 + ...

Vamos derivar sucessivamente:
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f'(x) = Ay + 2As(z — o) + 3A3(z — m0)* + 4A4(x — 20)> + . ..
f(x) =245+ 2-3- As(x —x0) +3-4- Ay(z — 20)* + . ..
f"(x)=2-3-A34+2-3-4-Ay(x — o) + ...
fD(2)=2-3-4-A;+2-3-4-5-As(x —x0) + ...

f(n)(x) =23 .-(n—2)-(n—1)n-A,4+2-3-. . -(n—1)-n-(n+1)-Ap 1 (x—20)+. ..
|l Fazendo x = xg

f(xo) = Ao, f'(w0) = As, f"(20) =2+ A

f"(x0) =2-3-43 ... fOlx) =n!-A,

OBS: Quando x( designamos formula de Maclaurin.

Exemplos de aplicagoes:

Seja desenvolver em série de poténcias a funcao:

a) f(x) = senz em torno de x =0

f(z) = senzx f(0) = sen0=0
f'(x) =cosz f'(0) =cos0=1
f(x) = —senx f"(0) = —sen0 =0
f///(x) = —COST f///(o) — _COSO — _1
f@(z) = senz f@(0) = sen0 =0
f(5) (ZL’) = COS X f(5)(0) =cos0=1
2 3 4 5
flz) = senx:0+x-1+%-0+%-(—1)—|—%-0+%-1+...
P T n 21
SenT =2 — gt oot = ;(—1)"“—(2n_ i
b) f(z) = cosx em torno de 0
f(@) = cos £(0) =
fl(x) = —senx f(0)=0
f"(x) = —cosx f7(0) = -1
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I'Q lL‘S 1'4
ZEQ .’13'4 .TL’G n x?n—Q
— 1 = - = _ _1\n+1
cosx =1 ST + T —{—...—i:1( 1) on =) n=1,23,

flz)=e f(0)=1
f'(z) = e Fo)=1
f//(x) — em f/l(o) — 1
F(z) = e f™0)=1

2 1’3 ZE4

X

d) Dedugao das formulas de Euler:

W — cos —i-senf comi=+/—1

e =cosh+1i-senf; e~

0., WO (i) (@0)*  (40)°
e’ =1+10 + 51 + 3l + 1 + 5l +
1440 0% 0>  09* 0> 05 h7
I AT T TR H TR TR
0 _ 0> 0+ ¢° iy 0 05 07
= e = —E—Fi—gﬁ-...—FZ _§+§_ﬂ+"'
cgsre serH

e = cosh +i- senf
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Substituindo § por —0 vem:

o, (=0 (=0 (=0)° - (=0)°  (=0)°
e =1- 5] + I — ol + ..+ =0 — 3] + 5l — ...
_q 02 0+ 6 ) 0 g 0 07
= —E—FI—g—F...%—Z —+§—5+ﬂ—a+...
_1 > o+ 6 p g3 05 07
= —a“f—ﬁ—a-i-...—l —54—5—%4—&—...
— ¢ =cosf —i- send

Formula do erro do desenvolvimento em Série de Taylor:

hn—i—l

Taylor R, = m f(nJrl) (a + 6}1)
. xn—i—l (n+1)
Maclaurin R, = CEm] (o)

Exemplos:

1) Achar o valor de sen31° com erro menor que 0,00001 conhecidos os
valores de sen 30° e cos 30°.

2) (Interpolagdo linear < dois primeiros termos da Série de Taylor)

As temperaturas de um paciente, em um dado dia, foram anotadas de 3
em 3 horas, obtendo-se os dados da tabela. Estabeleca uma estimativa
para a temperatura as 20 horas.

3) O crescimento de uma cultura de bactérias é representado pela equagao
Q(t) = 500 + v/t + 1 + 4t?, onde t expressa o tempo médio em horas.
Estimar o aumento na populacao ) no intervalo compreendido entre
8h e 8h15min.

Qual o erro maximo cometido por essa estimativa? Pede-se para usar
a diferencial da fungao no ponto t = 8.
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4) Estimar a drea da superficie corporal de uma crianga pesando 4,3 kg,
utilizando o polinomio de Taylor de ordem trés. Avaliar o erro cometido
e comparar a estimativa obtida pelo polinomio com o valor da fungao

5= 0,11x§

s = superficie e x = peso.

OBS: Comegar com [z = 8]

Exercicio: Acumulacao de uma substancia para fins terepéuticos, apds repe-
tidas doses.

Super difusao instantanea.

Concentragao oscilara entre as doses.

Sendo k o coeficiente de eliminagao da droga.

Intuito ¢ manter a concentracao entre os niveis de toxicidade e o minimo
aceitavel.

C. <c(t) < C,
Qual o intervalo entre as administracoes para que C. < ¢(t) < C,?

4.5 Exercicios

1) Determine as derivadas das fungdes abaixo, usando a defini¢ao

'~ f(z) = lim f(x) — f(xo) — lim f(zo+h) — f(xo)

y T—x0 T — X h—0 h,
a) x?
Solugao:
;. (w4 h)2—a? A 2hr+ R —
y = lim = lim
h—0 h h—0 h
g 2R o,
h—0 )
b) y=2*—-x+1
Solucao:
2 (a2
y,:hm(ﬁh) (x+h)+1—(2>—2+1)
h—0 h
b R el et B SV Al et
_hHO h
K(2x+h—1)

h—0 %
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c) y=ar?+br+c

Solucao:
y/:lima($+h)2+b($+h)+c—(ax2+bx—|—c)
h—0 h
_ oy ax? + 2axh + ah® + b +bh + ¢ — ax? — bt — ¢
= o h
2 h+b
:lim%( artaht ):2ax+b
h—0 )3
d) y =23
Solucao:
;o (wh)?—a? o A4+ 3ha? + 302+ hE —
y =lim ——— = lim
h—0 h h—0 h
2 2
:hm%(?)x + 3hx + h?) .
h—0 )3
e) y=a3—-2rx+1
Solucao:
y/:hm(5’3+h)3—2($+h)+1—(x3—2x—|—1)
h—0 h
i 254302 h +3ah + k3 — 26 —2h+ )} — 2B+ 27 —
~ h50 h
2 2
g AB A Bzh 4 2 =2)
h—0 }f
1
£) y==
) y=—
Solucao:
1 1 —¢—h
T +h oz 1 z(z+h) . _%
T A it R
_ -1
T hsatah | 22
g y=Vu
Solucao:
y’—lim\/ﬁh_ﬁ.*erh“L\/E—y xr+h—x

= 11m
h0 h Ve +h+yz b0 h(Vr+h+ /)
K 1

S TRV 2V
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1
h) g(t) = Tt
Solucao:
AT i
p_qe ThtEh T4t g ) (144
Y= R
: —X 1
= lim - _
S0 H(1+t)(1+t+h) (14 1¢)?
. 1
i) g(t) = T3
Solucao:
11 (1—é)—(1+i+}/:)
P i Itmh 1t g (It
Y= R
: K 1
= lim =

o K(1—t)(1—t—h) (1—1t)?

) 1
i) y= 2
Solucao:
r (a:+1h)2_z_12 = —2ha — b2
y = lim ———— = lim
h—0 h h—0 hx?(x? + 2hx + h?)
, —K(2x + h) _ —2x —h
= lim = lIm
h=0 Hx2(22 + 2ha + h2) =0 22(22 + 2hx + h?)
2z 2z 2
Coa2(x?) ozt a3

k) y = ¢, ¢ = constante

Solucao:
vov e f@) = flwo) o fle+h) = fz)
y(xo)—a}i)rgo T — X flll—>0 h
_t=C_,
— Y ==
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Solugao:

Vr+h+1—+yx+1

y_ilz—ﬂ) h
_hm\/x+h+1—\/x+1_\/x+h+1+\/x+1
h=0 h Ve+h+14+Vr+1
— im x+h+l—2—1  lim K
h=0h(vz+h+1+Ve+1) 0RNz+h+1+Vr+1)
1
2v/x +1
1
m)y:%
Solugao:
11 Vz—vz+h
y = lim Y2 VT gy Yo
h—0 h h—0 h

VI—Vath Ji+Vr+h
h%h\/ﬁ\/_ VT +VT+h

= lim v_(@+h) = lim i
=0 hlzv/o +h+ (z+ h)yz] =0 K[z + h+ (z+ b))
-1 1 1 1

Njw

- /T + x\/T - NG N PR
2) Usando a regra da cadeia, encontre as derivadas das fungoes abaixo:

a) y= e(@®+1)

Solucao:

y = f(u(@)) , onde f(u) = " ;
u(z) = 2? +1
= y' = f(v) -u/(2)
— g = @D L 9p = 9ge@HY)
b) Yy = e Senz
Solucao:
y=c¢€";u=senx

sen r

y=e"u, = y =e - COST
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c)

CAPITULO 4.

y = In(sen 2x)

Solucao:

y=In(u) ; u=1?
v=senzc

/ / rod
yx:yu.uv.vx

y =~ -2v-cosx
U

, 1 2.senwT - coST

= 5 T 28ENT - COST = ———————
sen “x sen 2z

, 2cosx

Yy = = 2cotgx
sen x

y = e(cos z+1)

Solugao:

y=¢e¢“;,u=cosr+1

y/ — . u/ — ecosx—l—l . (_ SQII.I’)
I _e(cosm—l—l) . senr
1 3
y=—ju=1+x
u
Solugao:
2
y':——3~2u-31‘2
u
/ 2 3 2
R (e ER
;o 1222 (1 A4-71?] B 1222
Y (1+a3)%  (1+a3)?
1
=Ly e

DERIVADAS
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h)

Solugao:

v=u+1l;t=u—1

v , vt—v-t
. 2€2cc<€2:v _ 1) _ (e2z + 1)2€2z
- (62m_ 1)2
,2e*[(€* — 1) — (¥ 4+ 1)]
¥y = (€22 —1)2
;o 2eP(P - 1 1)
vy = (623: _ 1)2
, 462117
Y= e Z 1y
(& — 1)

y = sen (cos(1 + z%))

Solucao:

Yy = u(v(t(x)))
U= senv u, = Cosv
v=cost wv,=—sent
t=1+2° t, =32°

r 1oyl
y_uv‘vt't:p

y' = cos (cos(l + x3)) . ( — sen (1+ x3)) . 32
= —32” - cos (cos(1 + 2”)) - sen (1 + 2°)

y=V1+vV1+a?

153
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Solugao:

Y= u(v(t(m)))

= N /:—
U \/E,uv 2\/5
1
U:1+\/¥;v/:—
t 2\/%
t=1+2";t =2
1 1 5
_-_.:L‘
2v/v 2/t
1

Y =u vt = Y =

Yy = . -2z
2V1+V1i+a? 2V1+a?
xz

/

y:
2V 1 +V1+ 221+ 22

d
3) Considerando y = f(z), use a diferenciac¢ao implicita para calcular d—y,
x

onde:

a) xy =1

Solucao:

l-y+xz-y =0
Y
-

b) %y + xy? =10

Solugao:

20 - y4+ a2ty +1-y°+x-2y-y =0
a?y + 2wy = 2wy — o
Y (2% + 2xy) = —20y — 9°
;o 2oy+y°
x? + 2xy

) P +ay—yi=1



4.5. EXERCICIOS

Solugao:

322 +1-y+x-y —3y°-y =0
vy —3y°y = —32° —y
v (z — 3y%) = —(32% + )
, 322 4y
Yy =— 2
T — 3y

2oy —y? =y +x

Solucao:

2y+2z-y —2y-y =y +1
2xy —2yy —y =1—2y

v (2 —2y—1)=1-2y

/ 1_2y

v = 20 — 2y — 1

y=(z+1)3x—1)>

Solucao:

y =3+ 1%z —1)*+ (v +1)°2(x — 1)
Y =3+ 1) (x—-1*+2x+1)>*x—1)
Yy =(@+1)>*x-1)[3xz—-1)+2(x+1)]
y = (z+1)*(z—1)(5z — 1)

y = 22y’

Solucao:

y =2x-y? + 2% 2yy
y/ — 2$y2 + 2:L,2yy/
y/ o 2x2yy/ — Qny
Y (1 — 22%y) = 22y
= 2xy?
222y — 1
ed -2 =1
Solucao:

vy a+e¥ 20 =0
, 2xeY 2

e

155
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241
h) y =
T
Solucao:
/_Z\/J%H-Zx-x—\/ﬂ—irl-l
y_ ./L'2
22
Y = x2+1—v$2+1:x2—(a¢2—|—1)
x? 22+ 1
, 1
Yy = ——F—F—F——
21?2 + 1
. 3 o
i) 2 +zy=y
Solugao:

3% +y+ay =y
y(1—x)=32>+y

. 32t +y
y:

1—=x

% —xy

=1
Ty
Solucao:

(22 —y — xy )y — (2% — 2y)(y + zy/)
2292
222y — xy? — 2Pyy — 2Py — 2%y +ayt +2fyy’ =0

=0

x3y/ _ x2y

Yy =
T

k) vVai+y?=y
Solucao:

1
— 22+ 2yy) =
SNCEST: ( vy') =y
2z +2yy') = 2y\/a? + y?

gy’ =yt +y’ —w

/

VL ki
Yy = 9
)
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) (zy —2)(x+y) =125

Solucao:

(y+ay)(z+y)+ (zy —2)(1+y) =0

vy + 22y oyt oy fay+ayy —2—-2 =0
22y 4+ 2xyy — 2y =2 — y* — 2y

Y (2% + 20y — 2) =2 — y* — 22y

r_ 2 —y® — 2wy

Y 22+ 2xy — 2

m) e*y* =1

Solucao:

4.6 Principio de Fermat

“Um raio de luz ao se propagar de um ponto a outro, tomara sempre o
caminho que demande o menor tempo”.

L:/uds

ds : variacao infinitesimal do raio ao longo da trajetoéria

u : indice de refracao do meio

Num raio homogéneo e isotrépico, o caminho 6ptico vale pois
n é constante.
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Reflexéo:
As : » B
3 | 3 r = /b? + x2
by | | | bo
} 3 l Ty = \/0? + (a — x)?
z : a—z ‘
[ T i
—— dn 2
L=n-s=n(r+rs) dfﬂ_2\/m
dL _ (dry, dr dry . —2(a—2)
dz \dz " dz  2,/b + (a — x)2
Caminho minimo: % =0
dx

x a— 1
n — =0
(\/b%—irxz wb%%—(a—x)?)

a—x

T
VE+2 B+ (a—x)

a—x

no; ;
V034 (a —x)?

Mas: se = senb,

X
NCEr

— [=7]

— ‘ senf; = senb,
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Refracao:

ny Ly =mnir

n
2 Ly = nary

Principio de Fermat

ab _, _, db_d
dr dr  dx

(TL17°1 + 7127"2>

dry 2x
{m:\/b%—l—xQ dz 9 /02 + 12

—
ry = /b + (a —x)? dro __ —2(a—3)
dz  2./b% + (a — 2)2

dL d d
— _:nlﬂ—i_nQﬂ:O

dx dx dx
dL

T a—
P! — N2
dz Vb3 + a? V03 + (a—x)?
sen 0,
sen 0; - LT T T T h
FRREN \
\ ,/ N
/ T \ | a—2x \
== Ny =10

= nysend; = nysenb,
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senbi _ 12| de Snell

senf, m

4.7 Movimento Browniano

Pelo principio da equiparticao da energia, particulas num dado sistema em
equilibrio, apresentam a mesma energia cinética média. Para uma certa
direcao, na auséncia de forgas externas, podemos escrever:

m: massa da particula

dx

Lo(de)'_1,. dt
§m dt ] — 277 k: constante de Boltzmann

: velocidade da particula numa dada direcao

T temperatura absoluta

Dai, concluimos que particulas com menor massa, apresentam maior veloci-
dade média.

O movimento Browniano é observado para particulas diminutas em meio
liquido, cujas dimensoes ainda permitam visualizagao, por microscopia 6ptica
de campo escuro, por exemplo. Este efeito, como mostrado pela férmula da
energia cinética média acima, é cada vez mais nitido quanto menores (ou seja
com menos massa) forem as particulas.

O movimento médio de uma particula, a partir de uma origem num dado
eixo, apés o tempo t é dado pela equagao de Einstein:

D: coeficiente de difusao

T =V2Dt t: tempo decorrido

O coeficiente de difusao de uma particula em suspensao, é definida pela lei
de difusao de Einstein, como:

Df =KT; onde f é denominado coeficiente friccional.

Para particulas esféricas podemos escrever:

kT kT RT
D= 7 = 6mna = 67naN, R: constante dos gases
m: 3,1416
_ RT . : .
= T =4/2X ——— Xt 7: coeficiente de viscosidade
6mnaN 4
a: raio da particula
- RTt N4: nimero de Avogrado
= |T=4]—r
3mnaN 4
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Exercicios:

1)

Calcular o deslocamento médio devido ao movimento Browniano apds
1 minuto, ao longo de um eixo, para uma particula esférica de raio
0,1um suspensa em agua a 25°C. Dado: coeficiente de viscosidade da
dgua nesta temperatura é 8,9 x 10~* kg-m—t-s71.

Solugao:
) RTt
=4 ——
3mnalN 4
- 8,31451J - mol ™" x 298K x 60s
~ \/3%x3,1416 x 89 x 10~4kg - m~! - s~ x 0,1 x 10~6m x 6,01 x 1023

_ 148663,439 x 101
xTr =
504,961 x 1013

T = /294,405 x 1012

Seja um meio aquoso estacionario, no qual ocorre a difusao linear livre
de um soluto cujo coeficiente de difusdo ¢ 2,32 x 107 c¢m?/s. Num
ponto de abcissa 0,22 cm, a concentracao do soluto e 0,035 mol-L~! e
num ponto de abcissa 0,23 cm, a concentracao é 0,032 mol-L~!. Qual
a quantidade aproximada de soluto que atravessa por segundo uma
superficie de drea 1,5 cm?, perpendicular a direcao de difusao? Dados:

d dC
12 lei de Fick: ' = —D x A x —_—,
dt dx
sendo m: massa; D: coeficiente de difusao; A: &drea; ¢: concentracao

do soluto.

Solugao:

de 0,032 — 0,035
hadP Uit htutnliiin bbb ., tem ! = — 10-3 1 4
a0 _02 _ OSmollem 0,3 x 103 mol/em

d
- d—T = 232x 1075 x 1,5 x (0,3 x 1073) = 1,04 x 10~* mol-s~!
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Dedugoes para: (1) equagao do deslocamento browniano médio e (2) lei da
difusao de Einstein. Para ambas as deducoes, utilizaremos a 1* lei de Fick
da difusao, que afirma: a massa dm de substancia que difunde na direcao x,
no tempo t, através da area A, é proporcional ao gradiente de concentracao
dc/dz relativo ao plano em questao.

dm de de
sinal (—): difusdo se processa da regidao de maior concentragdo para a de
menor concentracao.

m: massa

D: coeficiente de difusao

A: area relacionada com a difusao
¢: concentracao (massa/volume)

(1) Equacao do deslocamento Browniano

Area A no
plano de ca
referéncia

Para T pequeno, podemos escrever, para a massa de particulas desloca-
das da esquerda para a direita (corresponde a 1/3 do n° total de particulas
deslocadas) através de A (drea unitéria neste caso).

(Cl — CQ)IZ' XT (Cl — 62)f2 C1 — Co de

(%) m = 5 L= o , onde =~ ‘para T pequeno
1 de
= (x =—-—7
()3 m 2 dx o
Da 1? lei de Fick, (x); considerando a drea A, unitéria, fica:

de

1
Combinando (k)3 com (x), fica: —3 X T2 = —DX dt
= *=2Ddt = z=+v2Ddt
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(2) Lei de difusao de Einstein

A primeira lei de Fick afirma:

de dm de m: massa
dm =—D4 da dt < dt —bA dz ()1 D: coeficiente de
Adicionalmente, podemos concluir que o trabalho d/lfusao
A: area

para inovar uma particula numa distancia “dz”,
contra uma resisténcia de friccao “f”, corresponde
a variacao de potencial quimico dyu, sendo:

c: concentracao
f: coeficiente

funcional
dp=KTd(Inc) T: temperatura
dx absoluta
= f ar xdz = KTd(lnc) K: constante de
Forca Boltzmann
Trabalho

Esta equagao diferencial pode ser reorganizada como:

dr KT d(Inc)
dt  f  dx

de. KT _1dc dez KT dc

X = = | = —— —

dt f c dx dt fc do

Podemos escrever a massa difundida através de A, no tempo dt, como:

; como ¢ ¢ funcao de x, a equacao fica:

(*)2

Area massa/volume

N _dm_A dx (%)
dt - Cdt 3 —dm:ACdZZ'

massa

Usando (x); e ()3, obtemos:

dc dx dx de

Usando ()2 em ()4, obtemos finalmente:
D ZE N gf Df=KT]

4.8 Cortes ultrafinos

Muitas analises de cortes ultrafinos no interior do microscépio eletronico de
transmissao, dependem da medida precisa da espessura do corte analisado. A
espessura t pode ser obtida a partir das projecoes da distancia de dois objetos
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pontuais em faces opostas do corte, em imagens obtidas de projecoes do corte
em duas diregoes. Na figura, A e B sao dois pontos em faces opostas do corte.
Duas diregoes de projegao sao apresentadas (uma ortogonal e outra segundo
o angulo # em relacao a vertical; ¢t a variavel do problema, corresponde a
espessura do corte. No problema real, o feixe eletronico é mantido fixo, e o
objeto gira em torno do eixo do goniometro, onde se insere o porta-objeto.

1 ’
S & /
X 1 % 3 7
= 1 % ’.\\' <
[ : ¥a f@ J
L <O, J/ o~ S
z e N3
ﬂ) ﬂ.) 1 % Q) 22
—_— e o /
I Oy 4]
Sy 4(,@ o
,
e ,/ "'
-
// P 3
orte ultralino ‘ 4
V4 1’ i
1"\__ ’ ’f’
/A 1 4 s
d’ i’
# t #
; /
/8
s l'
;
1'/ ’ l/
’l' ’I, ’II
g \ 2 i
i ’
A,"r “"B=B’
7 =
y, 0

7 A”B” = tsen® + A’B’cos0
_ A”B” — A’'B’cos@
N senf

Avaliagao da precisao do calculo de espessuras de cortes para ob-
servagao por microscopia eletronica de transmissao, usando projegoes

com angulos de inclinagao diferentes.
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Projecao 1

(corte na horizontal)

Projecao 2 com

inclinacao 6

A'B ' =p= Mtsenf (%)

165

A e B: dois obje-
tos pontuais como por
exemplo na particula
de ouro coloidal.

A'B": paralaxe (di-
ferenga algébrica en-
tre as distancias entre
dois pontos nas duas
projecoes).

p

= t= M sen
dt d P pcosf
%= 3 (Msen9> =~ son2g’ PArA 0 pequeno, temos:
dt N p usando (1 M
9~ M2 T W
N

do 0 t 0

= A precisao da medida da espessura, depende da precisao da medida an-

gular.

Caso de inclinagoes simétricas em relagao a horizontal

K¥9/2

J 02

p
—oMtsen (2 ) = t = —L
()2 P Sen( ) i sen ()



166 CAPITULO 4. DERIVADAS

dt B d ( P >:> dt B pcos(g)

d(3) d(3) \2Msen (3) d(3) ~ 2Msen?(5)

9
Para /2 pequeno, usando (), temos: dtg = —Mt@
d(3) (8




Capitulo 5

Integrais

Seja calcular a 4rea sob o grafico de y = 2% aproximando a regiao por
retangulos:

Y

Dividimos o intervalo fechado [0, h] em n pequenos intervalos de igual
comprimento, usando os pontos:

0 h 2h (t—1)h ih (n—1)h nh
) n? n PR | n b n )y Tt n b n
Sequéncia de [0,] , [, 2] |:(z‘—1)h m] [(n—l)h M}
intervalos fechados Tnd et d L B non

Cada retangulo usando a altura com a ordenada da direita.

. 2 .
. o, : th h  h3?
Area do i-ésimo intervalo: a; = [ — | - —

n n n

167
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, n n h32 h3 n
Area total: A, => a; = Z—: Zz

=1

}: n+1@n+D

Quandon —+ 00 = lim A, = —.

O mesmo problema aproximando “por baixo”.

Y

Dividimos o intervalo [0, ] da mesma forma mas a altura do i-ésimo
retangulo é a ordenada da esquerda.

Az
(i—1)Rr]* 7 "h> b3
f = C = (1 —1)?
a,; |: n :| \n’// ng(l )
& h3 n=l

Area total: A! = Z a;, = 2 —3(2 — 1) == >

i=1 ne =1
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0
3

h h
Pois Al = — E(n +1)(2n+1) — nQ] =A, — an/ no limite.

n3 L6

hS
lim A = — Ar -0 = dzx
n—00 3

Teorema 5.0.1. Seja R = {(z,y) |0 <2z < he0<y<a?}. Entdo a drea

h3
de R é —.
eRé5
Teorema 5.0.2. Seja R = {(z,4)|0 <2z < he0 <y < ka?} comk > 0.
kh?
Entao a drea de R € =

Em geral, para a < b seja
b
/ kx* dz (Integral definida),

a drea da regiao sob o gréfico de y = ka? de x = a até b. Entao

b
k
Teorema 5.0.3. / kx?dx = 3 (b —a?)

a

Yy

a X

De forma geral dizemos que a area entre a curva e o eixo das abcissas
vale:

A:/abf(x)dx
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/abf(x)dxz/acf(x)dw+/cdf(x)dx+/dbf(m)dx

5.1 Propriedades da Integral definida

1) Se ¢ é uma constante:

/abc-f(x)dx:c-/abf(x)dx

2) Se y; = f(x) e yo = g(z) sdo continuas em [a, b], entao:

/ab [f(z) + g(z)] do = /(;bf(l’)dl’—l-/abg(x)dz

3) Sey = f(x) é continua em [a,b] e ¢ é tal que a < ¢ < b, entdo

/abf(x)dx:/acf(a:)der/cbf(:c)d:c
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4) Se y1 = f(z) e yo = g(x) sdo continuas em [a,b] e f(x) > g(z) para
todo z em [a, b], entao
b b
[ o= [ g

5) Se f(x) é continua em [a,b] e m e M sdo os valores minimo e maximo
de f neste intervalo, isto é, m < f(x) < M, entdo:

b
m(b—a)g/ flx)de < M(b—a)

6)

Teorema 5.1.1. Teorema do valor médio para integrais.

Se y = f(z) € uma fungdo continua em [a,b], entdo existe um nimero
¢ satisfazendo a < ¢ < b tal que

(/f@Mx:ﬂaw—@
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Demonstracao.
b
mb—a) < [ flx)de < M(b—a)
b
f(z)dz
m < =4 <M

b—a

b

f(z)dz b
s = () = [ f@de= () b—a)

7)
Teorema 5.1.2. Teorema Fundamental do Cdlculo Integral
Seja y = f(x) continua em [a,b] e

F(x):/ ft)dt paraa <t <z <b

Entao

a) F'(x) = f(x), para todo x em (a,b).

b) Se y = G(x) € qualquer fungao tal que G'(z) = f(x) em (a,b),
tem-se:

/f@szaw—G@
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Demonstracao. a:

Na figura abaixo, y = F(x) = / f(t)dt representa a drea entre o

a
grafico, o intervalo [a,z] e as retas t =a e t = x.

y=F(z)

AF:F(erAx)—F(x):/am+mf(t) dt—/:f(t) dt
:/jf(t)dH/jmf(t)dt—/:f(t)dt:/;mf(t)dt

Pela propriedade 6 temos

rz+Ax
AF = / f)dt = f(e)[(z + Az) — z] = f(e)Ax

para |z < e <z + Ax ‘ Entao:

AF  f(e)Ax
Az Az = f(e)

/ . AF .
= PO = m e = A 9 =)
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Demonstracao. b:

Pelo item anterior

Flz) = / f(t) dt

F/(x) = f(z) em (a,b)

Se y = G(z) goza da propriedade G(z) = f(z), entdo
F(z) — G(x) = Cte (constante)

Logo
F(a) — G(a) = Cte = C = —G(a)

pois F(a) = 0 (pela integral).

/wf@)dt_c;(ch

— / F(#)dt = G(x) — Gla)

Fazendo x = b fica

/f@a—G@—G@

Podemos escrever também:
b
a

b
/fmwzmm

= G(b) - G(a)

Portanto, temos agora um método para calcular a integral de qualquer
fungao continua em [a, b]. Basta conhecer a primitiva de f, ou seja: G
tal que G'(x) = f(x) para todo x em (a,b).

5.2 Técnicas de Integracao

5.2.1 Integracao por substituicao ou mudanca de varidvel.

Seja F(x) = f(g(x)), pela regra da cadeia temos:

Fe) = [£(o)] = F/(6@) - o' (a)
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Segundo o teorema fundamental do Calculo Integral:

/% [f(g(x))] dz = f(g(z)) + ¢

Fazendo y = g(x), temos

[7at2) - gw)de= [ 1wy =10+ e = £low) +¢

Exercicios
1) Encontre uma primitiva para f(x) = (2 + 1)'9%

d d
Solucao: Fazer y =2r+1 = d—y =2oudy =2dx; dz = gy
— x

d 1
/(233 1 1)199 4y = /y1999 73/ =2 /y1999 dy

1 yQOOO (21. + 1)2000
=592000 T 100 €
2 (2r+1)da

2) Calcule:

0 V222 +2x+3
Solucao: Fazer y = 22° + 2z + 3

d
dy=(4r+2)dr = dy=2(2z+1)dr = (2.:1:—{—1)d3::7y.

(2 +1 15 dy ‘ _JIE
= = 15— /3
0o V21§ 295 +3 Ji 20y =V

y(0) = 3;
4 2 5
3) /(3x3+2x4)dx: {S%JF%H}

4) / (ax’y + fa*y?) df = {oz:c?’yﬁ + ﬁ%gzyz + 0}
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5) /[cos(x2 +1)]2zdz

u=1ax%+1
du = 2zdx

/[cos(x2+1)]2xdx:/cosudu: senu + ¢ = {sen (z* + 1) + ¢}

6) /6952*1 2xdx

d
=241 = d—u:2x = du = 2zdx
T

/69”2*1 2rdr = /e“ du={e"+c} = {e$2+1 - c}

7) /sen (t2 +1)2tdt = /senudu ={—cosu+c}={—cos(t* +1) +c}

u=1t>4+1; du=2tdt

3) /(x2+1)7xdx:%/u7du:{%% c}:{ijc}

u=1ax%+1
du
du =2xdz — $dx:7
9) COS\/_d:E (x > 0)
\/_
G
1
du = 2\/_da: — \/de:Qdu
/COS\/_deQ/COSUdU:2{SGHU+C}IQ{Sen\/E—i—c}
VT
10) /ecoswsenl‘dxz_/eudu:{_6U+c}: {_ecosx+c}
U = COSZT
du = —senxdx

5 23
11) /(mz—l—l)Qd:p:/(x4—|—2x2+1)dx:{%+%+m+c}
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12) /(1+12)3xdx:%/u3du: {%“{w} _ {%(1+x2)4+c}

u=1+2?
du = 2xdx
1 t t 4
13) /<$2+t2)3tl‘d$—§/U3th—§/u3du_ {5%_'_0}
t 2 t24
u =%+t
du = 2z dx

14) /(1+\/§)3%dx:2/u3du:{%ﬁ+c}:{%—l—c}
u=1+x

1
du=—=d
u Qﬁx

15) /(6x+2)4ezdx:/u4du: {%SJrc} = {@ﬂ:}

u=e*+2
du = e*dx

2 2
/(1~|—tg:v)3/286c2$d1‘:/u3/2du:{gu5/2+c}Zg{(1+tgm)5/2+c}

u=1+ tgx

du = sec? xdx

1) [(ere oo do = futdu= {“; " c} _ {@ " c}

u=e*+e”

du = (e* —e ) da

[ =g [ Bt fora= {Jewn s = F o) -
e

uw=1+2?
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du = 2z dx

x 1 [du 1
19) /1+x2dx—§/7—{§logu—l—c}

u=1+2?
du = 2z dx

20) /—-lnxdx - /udu _ {%+c} - {(n;) +c}, z > 0, nio
T

definida para x <0

u=Inz

1
du=—-dx
T

2 1
21) /senx-cosxdx:/udu: {%—l—c} = {5 sen%—i—c}

u = senx

du = cosx dz

3 3
o o o 5] {52

u = senx

du = cosz dx

3 3
23) /cos2xsenxdx:—/u2du: {—%+c} _ {—00§$+c}

U = COsSx

du = —senxdx
/tg20d0:{—9+ tgf + c}
OBS: y = tg6

v =1+ tg? = /tg29d9:—/d0+/dy

sen 0 du 1 1
25) /cos@de:_/ﬁ:{a+c}:{COSH+C}

u = cos b
du = —senfdf
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/2sen29 1)d9_2/sen20d0 /de_R/Mde—/dH:
/d@ /00529d9 /dGz{—SeI;29+c}

OBS: cos20 =1 — sen?d

27) /(hlxx)g dz = /u3 da = {“{ n C} _ {(1n4:v)4}

u=Inzx

1
du=—-dz
T

5.2.2 Integragao por partes

Sejam duas fungoes diferencidveis u e v.
d(uv) = udv +vdu

Integrando ambos os membros:

/d(uv)—/udv—l—/vdu

Pelo Teorema Fundamental do Célculo:

uv+C’:/udv+/vdu

/udv:uv—/vdu—i-C
Ex. Calcule:

6227 6237 $e2x 6237
) / ze*de = o= / 5 de { 5 1 +c}

u=z2 = du=dzx

dv =e*dr = v:%

2) /a:cosxdx:xsenx—/senxdx:{xsenx+cosm+c}

u=x; du=dx

dv =cosxdx; v = senx
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-_7

//'\\ ]—
3) /x\lnx}dx :xlnx—/x~—dx: {ztlnz —z+ C}
x

1
w=1Inzx; du=—dx
x

dv=dx;v=1x

~

// \ 1
4) /‘\1n2x/?da::xlnzx—/m-Zlnx-\;\dx:xlnzx—Z/lnxdx

-

= {xlnzx—lenx—l—Qx—i—C}

1
w=In*z; du=2lnz—dx
x

dv=dz;v==x

T Cos ax cos ax rcosar — senar
5) [xsenardr = — + de =<— +——+c
a a a a

—x 1
= { (—) cos ax + (—2) senaxr + ¢
a a

u=x; du =dx

COos ax

dv = senax; v = —
a

b ll \‘
6) /e‘“’ cos(bz) dz = e - ser; - %Q /e‘w sen bx dx |

u = e*; du = ae™ dx
sen bx
b

b
(*)/e‘” sen bxr dr = —e®” % + %/e‘” cos bx dx

dv = cosbrdx; v =

U=e" dU = ae™
cos bx

dV = senbxdzx; V = — 2
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Voltando na expressao inicial:

b b
/e‘” cosbr dx = e** senor 4 {—6‘” cosor + 4 / e cos bx dx}

b b b b
_ oa SO0 bz N ae’ cosbr  a® 9% o b d
a b b? b?

@ cos bz dz |1 + a? e sen bx N ae® cos bx
€ cos bx dx —| =
b2 b b2

be®™ sen bx + ae® cos bx]

¥
1
e‘“cosbxdx:{( )-eax-[bsenbx—i-acosbx]jLC}

axr %
e cosbrdr = prR [

— Y — —

a? + b?
r?senxdr = —x2003x+2/xcosxdx
uw=2% du=2xdx
dv = senxdz; v=—coszx

Q/xcosxda: = Q{xsenx—/senxdx} =2{zsenz + cosz + C}

U=z, dU =dx

dV =coszdx; V = senx

— /x2senxdx = —22cosx 4+ 2xsenx + 2cosx + C

/:c2ex dr = z2e® — 2/3:63” dx

u=2% du=2xdx

dv=e"dx;v=e¢e"

2/xexdx—2{xex—/exdx} = 2xe® — 2e* + C

U=ux;,dU =dzx
dV =e%dx; V = ¢

— /x2e”” dr = x2%e® — 2xe® 4+ 2e* + C
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//’\\\ 31 2 XQ 1
9) /962‘\11121':'d1’: s x—/x—-anzx—dx
N 3 3 X

1
u=Inz;du=2Inx - —-dz
x
3

T
dv =2?dz; v = —

3
2 3 ¥
—/xﬂnxdng x—-lna:— $—idx
3 3\3 3 3y

1
U=lnx;dU = —dzx

T

3

dV:xde;V:%

31z 2 /2*lnzx 1
:>/x n“zdx 3 3( 3 3/93dx)

3 213 2
/x2ln2xdx:x—ln2x—ilnx+—x3+0

3 9 27

Ex. Calcule as integrais:

V)=

_5/7r/5 du z=0=u=0
7)o cos?(u) u:§<

/5 _ _ T
:/ sec?(u) du . T=T=Uu=j3

0 du =% = dzr = 5du

- 0
=0ot

g(w]

0

= 5tg (2) — 5 tgf0)
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/2 rT=% = u=7

_ 1 2
= /7r/4 cotg *(u) du u:2x<

1 /2 T oy
= =|— t _ 1 z

2[ cotgu u]ﬂ/4 du:2dx:>dx:d7u
= 1 [(~cotsg — 5) — (~cots s — )
~4[0-5) - (1-9)
:_%+%+%: —2ﬁ—§4+77

4—7

Encontre os nimeros A e B tais que a fungao f(z) = A-2%+ B satisfaga
as condigoes f'(1) = 2; f03 flz)dz =7.

Solucao:
fl(x)=A-2%-In2

(1) = A% 102 — _ 1
f)=A-2m2=2 = A= —

3 3 3 1
/Of<x>dx=/o<A~2 +B>dx=/0 (E-z +B) i

1 3 3
— — 2xdx—|—/de:7
0

In2J,
1 27 ’ 3
1 pal =
In2 11r120jL :130 /
8 1
— — +3B=17
In?2 1n?2

8 —1+3BIn’2="7In??2
74+ 3BIn?2 =7In%2
7(In*2 — 1)

3In%2

Encontre @ > 0 para que a desigualdade ffa e*dx > 3/2 seja verda-
deira.

Solugao:

(6%
/ efder=e*—e“
—
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e —e =
2
eo‘—i>§' fazer y = e
e 27 |Obs.:y>0
1 3
= y— - >
y 2
1 3
———=>0
Y 2
3

2_1-Sy>0
y Sy

3
Resolver: 3% — Y~ 1=0

3 9
YT
3 25
aEYT
YT
8
3.5 p=3=5i=2
yzéii /
2N\
_2
yQZTQZ -

hor 2o —
Voltando a inequagao:

5.2.3 Meétodo das Fracoes Parciais

Seja F(x) = %, uma fragao racional. Caso o grau do polindémio f(z) seja
menor do que o de g(x), dizemos que F(z) é uma fragao racional prépria.
Caso contréario, F'(z) serd uma fragao racional imprépria. Neste segundo
caso, F'(x) poderd ser representada como a soma de um polinémio com uma
fragao racional propria.

x x

Exemplo: oo :x—x4+1

Uma fragao racional prépria pode ser expressa como soma de “fragoes
parciais”, cujos denominadores sao da forma (az + b)" ou (azx? + bx + )",
com n um inteiro positivo. Considerando a natureza dos fatores do polinémio
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do denominador, estudaremos os seguintes casos:

1° caso: A cada fator do tipo ax+b que aparece uma vez no denominador de
uma fracao racional prépria, corresponderd uma fragao parcial do tipo - ﬁrb’
onde A é uma constante a ser determinada.

dx
2 —4

Exemplo 1: Encontrar /

Solucao:
22 —4=(x—2)(zv+2)
1 A B
x2—4:m—2+m+2 = 1=A(x+2)+ B(z —2)
= 1=(A+B)x+ (24 —-2B)

A+B=0 = B=-A

29A—2B=1 = 24 +24=1 = |A= -

1 1
1 4 4

2+x+2

/ dx 1/ dx 1/ dx
= ==

2—-4 4 ) x—-—2 4] x+2

1 1
= Zln(az‘—Z)—Z—lln(m—l—Z)%—c

—2

5
Exemplo 2: Calcular / f dz
—_— x?—4
Solucao:
br — 2 A B

@—2(w+2) -2 242
= br—2=A(r+2)+ B(z —2)
br —2=(A+ B)x+ (2A —2B)
= A+B=5= A=5—B (%)
ZJA-2B=-7 = A=B-1

= 5-B=B-1=2B=6=|B=3]|
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() A=5-3 = [A=2]
br — 2 2 3
:>/x2_4dx—/x_2dx—l—/x+2dx

0T — 2
/xf 4dx:{2ln|x—2|+3ln]:€+2[—|—c}

dz

—1
Exercicio: Calcular / $2
x? —4

2° caso: Quando o polinomio do denominador da funcao racional propria
pode ser decomposta em fatores lineares do tipo ax + b, aparecendo n vezes.
Neste caso, podemos escrever:

A n Ay P Ay
ar+b  (az+b)? 7 (ax+b)"’

com Ay, Ag, ..., A,, constantes a serem determinadas.
3 + 5

Exemplo 1: Encontrar / i dx

—_— d—x?—r+1

Solugao:
Fatorando o denominador, temos:
- —z+1=(z+1)(z—1)>
3r+5 A B C

$3—$2—I+1:x+1+x—1+(x—1)2

= 3x+5=A@*-2r+1)+B@* - 1)+ C(z +1)
3r+5=A2?—24r+ A+ B> — B+ Cx +C
=(A+B)2*+(C-24)x+A—-B+C

A+B=0 = B=-A
—2A4+C=3 = (C=3+24
A-B+C=5 = A—(-A)+(3+2A4)=5

= 4A=2 = |A=

1
2

= |B=—3 ;C:3+2x%:
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/ 3T + 5 d 1/ dz 1/ dz +4/ dz
xr = — _— = —
w—x?—r+1 2) z+1 2) -1 (x —1)2

1 1 4
=-In(z+1)—-In(z—1) — ——+¢

2 2 x—1
r—1
Exemplo 2: Encontrar / ——dx
e = (=2
Solugao:
x—1 A B C

(x—2)3:x—2+(x—2)2+(x—2)3

=z2-—1=Ax—-22?+Bx—-2)+C ()

Fazendo z = 1 temos:

2-1=C =

Derivando a expressao (x) e fazendo x = 2 novamente, temos:
—1=2A(x—2)+B

:>—1:2A><0+B:>

Derivando novamente, temos:

0=24 =
e e R e
:{xi2_2(xi2)2+c}

3° caso: Quando o polinomio do denominador de uma fragao racional prépria
pode ser decomposto em fatores lineares e quadraticos, tendo estes ultimos
multiplicidade um, a cada fator do 2° grau irredutivel, corresponderda uma
fracao racional prépria do tipo:

Axr+ B
L , com A e B constantes a serem determinadas.
ar? +bx + ¢
d
Exemplo 1: Encontre / 3 v
S— 0+
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Solugao:
Fatorando o denominador, temos:
+r=x*(r+1)
r é Bx+C
»+r oz x?+1
= 1=A2>+ A+ Bx*+Cx
= 1=(A+B)2*+Czx+ A

A+B=0
A=1|=|B=-1

:>/ dx B dx /xda:
B +r x 2 +1
1
—{ln|x|—§ln]x2+1|+c}

x2 42

x3—1dx

Exemplo 2: Encontre /

Solucao:

B-1l=@-D@*+z+1)
?+2 A N Bx +C
»—-1 -1 x2*4zx+1

2 +2=A*+z2+1)+ (Bx+C)(x —1)
=(A+B)*+(A-B+C)z+(A-C)

Resolvendo o sistema: A+ B =1
A-B+C=0
A-C=2

temos: A=1;,B=0;C= -1
% 42 A Bx+C
/x3—1 . /x—l x+/x2+x+1 o

_/ dx _/ dx
=1 24+x+1
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22+ 2 dz
= de=Inlz—-1|— | ————
/a:3—1 v=nfz | /x2+x+1

OBS.: Complementando o quadrado:

Todo polinémio quadratico az®+ bz +c, pode ser escrito como a[(z—p)?+r].

Fazendo para o denominador da segunda integral, temos:
?+r+1=1x[(z—p)Q*+1]

Por comparagao temos:

?+r+1l=a®—2pr+p*+r=a®—2pr+ (p°+r)

1

1=-2p = p:—§

9 1 3
1=0p +T:>1:4_1+r:> T:Z

1\* 3
= 22424+ 1=(z+=) +-
2 4

:>/x2+2dx—/ dx _/ dx
-1 Ja-1 (x+1)243

OBS.: Agora, devemos transformar o denominador da segunda integral rea-
lizando a substituigao:

x_
u= p(oux:qu+p), onde ¢> =r.
q

A substituicao transformara o denominador em:

ag*(u® +1).
No caso geral, a integral ficaria:

R(z) . _ [ Blautp) .
| 507 % = [ sy A+

uwdu du
=A B
/uQ—l—ljL /u2+1

1
= §Aln(u2 +1) + Barctg (u> + 1) + C

No caso particular do problema, R(x) = 1, entdo, temos:

dx R
VRTINS pela transformacao fica:
(x+3)" +13
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Ix3w+1) 3

/d(§u—%>_4/§du a=1

3/ w21

2
_4>< 3 du _2\/§ i 2—r—§
=3 1] a1 = T3 Actgute q = —34
249 2v/3 +1 = Va
:/x il de =In(x —1) — \/_arctgx 2 tc 1
¥ —1 3 \/g T = §u—1
4 4 2
3
3 2 1 -
—|In(z—1) - \?)/_arctg x\/g te| |do=y/qdu

5.3 Calculo da area do circulo

A regiao hachurada corresponde a 1/4 da
area total A, sendo: R o raio da cir-
cunferéncia; = e y as abcissas e ordena-
das, respectivamente, dos pontos da cir-
cunferéncia, com y = f(x).

Entao, podemos escrever:

R
A:4/0 f(:L‘)dZL‘:4/OR\/’I“2—l’2dZE.

Neste tipo de integral fazemos a substituicao trigo-| Considerando
nométrica z = Rsen#, o que leva a nova expressao: um triangulo
do tipo:

A= 4/ VR? — (Rsenf)? - Rcosfdd
R x
Os novos limites da integracao serao: X
Para z =0 = 0= Rsenf = [§ =0] Y

Paraz =R = R— Rsen = |0 = - x = Rsend
2 dx = R cos0df
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= A:4/Og VR? — R2sen2 - Rcosfdf
:4/OngRcosed9
:4R2/Ogm0089d9
:4}%2/72r cos? 0 df
0

Utilizando a relacdo conhecida: cos?§ = HCTOS%, fica:

51 20 3 /1 20
A:4R2/ “%de:zm?/ (—+C°S )de
0 0

2 2
Pelo Teorema Fundamental do Célculo, temos:

jus
2

0 sen 20
A=4R?|( =
w5+ °7)

e (§+0) =nr?

5.4 Areas em coordenadas polares

B

Q(r + Ar, 0 + A9)

eixo de

0 referéncia

A drea AOB pode ser considerada como a soma de setores circulares com
intervalos angulares:
b — «

Af = ,

n

com n um numero inteiro representando o niimero de subdivisoes do intervalo
total B — a.
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Entao, a area total AOB sera a soma das areas elementares dA = %7’2 de.

Este somatorio fica:

B B
. 1 ) . . 1 2
A= QE_ 5 Tk Af = AIGHSO HE_ 5 [f(0x)]" A0
- (n — o) -

1 1
OBS:dA=-rdgx_r =-r’df; A= [dA
2~~~ ~~ 2

arco raio

Exemplo: Area do circulo de raio R:

A:2></—R2d0:2><—R2></d9
0o 2 0

yA
:R2><7r:

Exemplo: Determinar a area interior ao circulo com raio R.

dAzlrde
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ds

rdd  qA =rdodr
\9 dA = rdrdé
A

R 27
A:/ rdr/ do
R 0 0
R2

:7-27T:7TR2

AS
Af

37 = = [A5=ra7]

Exemplo: Aproximacao do volume de sangue que flui por segundo através de
uma sec¢ao transversal de um vaso de grande calibre.

Solugao:

A lei de Poiseuille (1842) para o fluxo laminar num tubo cilindrico afirma:

v=Fk(R?*—7r% cm/s

Neste problema, vamos aproximar
o sangue por um fluido homogéneo V- velocidade do fluxo;

pois os elementos figurados do san-  k: constante dependente de vérios
gue tem diametro < diametro do  fatores tais como: comprimento do
vaso. vaso, diferenca de pressao entre
os extremos, viscosidade do fluido,
_ _volume etc.;
Segundos
=vxA R: raio do vaso;

dA = rdédr o 5 .
r: distancia do centro da secao cir-

cular até um ponto deste plano que
secciona o vaso;

V': volume do sangue;

A: area da secao transversal do

~ Vaso.
secao transversal do vaso
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dV = k(R? — r?)rdfdr; V: volume/seg

R
/ d9/ Hrdr =27 [/ kR2Tdr—/ kr?’dr]
0 0

R 4

R 4 4
r r kR kR
=9 2 _ =9 _
T |kR (2>0 k:40] 7r(2 4)
4 4
_ 27k R cm3/S: kR cmg/s

5.5 Exercicios
1
Calcule a integral definida: I = / e MR
0
Solucao:
e Fazer arcsenx =t = x = sent; do = costdt

e Novos limites de integracao: para x =0,¢t =0
r=1t=m/2

w/2
= [:/ elcostdt (x);
0

Integrando por partes, temos:

el =u;du=eldt
/udv:uv—/vdu
costdt =dv; v= sent

/2
= I =[¢ sent]g/2 —/ senteldt  (x)q
0

Integrando por partes, novamente, temos:
et =u; du = et dt

sentdt = dv; v = —cost

w/2
/ e sentdt = [—e cost]y / (— cost)e dt
0 0

w/2
/ e'sentdt = [—e' cost]; +/ el costdt (*)3
0 o

De (%)1, (x)2 e (*)3, temos = [ = [¢* sent]o/ — [—€! cos.t]g/2 -1
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= 2I = [e'sent]]/” — [—¢! cost]]
1 n 1 :

I =Zletsent]])/? — Z[—et cost]]/?
2 2
1 1 1

I = _671'/2 _ = _(67'(/2 _ 1)

/2

195
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Capitulo 6

Equacoes Diferenciais

6.1 Equacoes Diferenciais Ordinarias

Grande parte de fenomenos da natureza, cientificos ou tecnoldgicos, podem
ser expressos por equagcoes diferenciais.

As equacoes diferenciais sao um tipo de equacoes que apresentam deriva-
das ou diferenciais de uma dada funcao.

Exemplo: Seja a equagao algébrica z2 + y?> = a, sendo y = f(z) e a uma
constante.

Ao diferenciarmos esta equacao em relacdo a x, obteremos a seguinte
equacao diferencial:

(%) 20 +2yy' =0 ou x+yy =0

No presente capitulo, estudaremos alguns tipos de equacoes diferenciais. Para
isto, é importante classifica-las.

Em particular, quando a equacao envolve duas variaveis, sendo possivel
ocorrer derivadas em relacao a apenas uma delas, denominamos “equacao
diferencial ordinaria”. Este serd o tipo principal tratado no capitulo.

Definigoes
Equacao diferencial ordinaria:

E uma relagao entre as varidveis x e y, e pelo menos uma das derivadas v/,
Y, ..., y™ de y em relacdo a x.

F('r7 y7 y/7 y”? A 7y(n)) = 0

Ordem da equagao diferencial:

197
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E o expoente da maior derivada na relagao funcional.

Grau da equacao:

E o expoente da maior derivada.

Equacao linear:

Equacdo em que y e todas as derivadas (mas nao z) aparecem linearmente.
Pode ser escrita como:

an(2)y"™ + @y (2)y" Y + L+ ai(2)y = Q(x)

Solugoes de uma equacao diferencial

Uma solugao de uma equagao diferencial é uma equacao tal que, se as variaveis
as satisfazem, ela e suas diferenciais ou derivadas satisfazem a equacao dife-
rencial.

Exemplo: Se ¢ é uma constante,
22 —zy=rc ()1
¢é solucao da equagao
(2x —y)dr —xdy =0 (%)2

pois, diferenciando (x); obtemos (x),.

d
2z — <y+x—y) =0
dx

dy
e —y—x—= =
Toy-r o 0

2vde —yde —xzdy =0

Veja:

2z —y)dr —2zdy =0

Entao, se x e y variam de tal forma a satisfazer (x);, elas e suas diferenciais
satisfazem (k).

Como a constante ¢ pode ter qualquer valor, a equacgao diferencial tem
infinitas solugoes. Plotando x, y no plano cartesiano, cada solucao sera re-
presentada por uma curva.



6.1. EQUACOES DIFERENCIAIS ORDINARIAS 199
\%
X
curvas

representando
solugoes
/\ h

A primitiva de uma equacao diferencial, é uma relacao entre variaveis e
n constantes arbitrarias, como por exemplo y = Az? + Bx. Ela dard origem
a uma equagao diferencial livre de constantes arbitrarias, a partir de n + 1
equagoes, quais sejam, a propria primitiva e as n equagoes provenientes de n
derivadas sucessivas da primitiva.

Y

Exercicio 1: Classifique as equagoes ordinarias abaixo.
a) ¥ + a2y +2y(y')? + 3y =0
b) vy =104y
¢) dy+ (zy — cosz)dz =0
d) v +4y==x
e) (¥) —y +2y=2a?
f) Vi’ +7r=2senf

& dv? dx dz N
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h) y/// + y2 =2

Resposta: a) 3* ordem, 1° grau; b) 1* ordem, 1° grau; ¢) 1* ordem, 1° grau;
d) 2% ordem, 1° grau; e) 1* ordem, 2° grau; f) 1* ordem, 1° grau; g) 2* ordem,
1° grau; h) 3* ordem, 1° grau.

Exercicio 2: Verifique que as fungoes abaixo sao solugoes das equacgoes dife-
renciais indexadas. Diga se cada solugao é solucao particular ou primitiva
(solugao geral).

sen x

a) y = ;Y +y =cosw

b) y=azv1— 22 yy =z — 223
c

¢) y= Yy —tgr-y=0

COS T

d) 22 +y*=cyy +2=0

e)y=e"(l-z)y" =2 +y=0

f) y=cre®+ce ™9y —y=0
Resposta:
2) o/ T COST — senx
Yy = 22
X COST — senx
: 7 + Yy =COSxr = TCOST — SenxT + TY = T COST

sen r

solugao particular
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(x—22°)V1—2a? x(1=—27")V1— a?
1 — 222 B 1-—27%

y = xv 1 — 22| solucdo particular

csenx tgx

/ —
)y =—35—=c
cos? x cos T

= solucao geral

d)y=c—12>=>y=+vc—2a?
e S ) I
e —ax2 Ve — a2 Y Ve— a2

= —zy+xVe—12=0

= y=+vc—a? = 2%+ y* = ¢| solucdo geral

Y +x=0

e)y =e'(1+z)+e =e"(2+2)
y'=€e"2+z)+e* =e"(3+2x)
= e"(3+1x)—2"(24+2)+y=0
e"B+x—4—-22)+y=0
e“(—1—z)+y=0
y—e'(l+z)=0

y = €°(1 + x) | solugao particular

f) v = c1e” — cpe™™

y' = cie” + e

= e +ce ™t —y=0

y = cre” + coe” " | solugao geral
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6.2 Equacoes separaveis
Se a equacao diferencial tem a forma

filz)dz + foy)dy =0

as variaveis sao ditas separadas, e portanto, cada termo é uma diferencial
exata. Neste caso, a equacao total tem a forma

du=0, ondeu:/fl(:c)dx—i-/fg(y)dy,

o que leva a: u = /fl(x) do + /fg(y) dy = ¢, sendo ¢ uma constante

arbitraria.
Caso as varidveis nao estejam separadas, nao podemos resolver a equagao
diferencial, de forma simples, como acima.

Exemplo: zdy + (1 —y)dz =0

Neste caso, nenhum dos termos da equagao pode ser integrado diretamente.
Entretanto, dividindo os termos por z(1 — y), obteremos as variaveis separa-
das, e a equacao fica:

d dx
_y + — =0, cuja solucao serd entao obtida por integracao:
/ =Inc
OBS: incluimos Inc¢ como
—In( 1 —y)+Inz=Inc constante, para simplificar os
x calculos, como se pode ver
In =lInc . .
1—y imediatamente.

= z=c(l—y)
A equacao diferencial acima se enquadra no caso resumida a seguir:

Y = F)oly) = —~ dy = () do

9(y)
=\ Jree

Podemos integrar ambos os membros da igualdade de modo independente.

d

Exemplos:

d
1) % + (1 - y2)1/2 =0 (1* ordem, 1° grau, separavel)
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Solugao:
dy dy
Y sde=0=> [ dz =0
e T A
—_——
Problema ja resolvido

1
= sen ly + 5:152 =c

L,
=sen|c— =
y=sen|c 235

d
2) y—In (d_y) =0 (1* ordem, 1° grau, separavel)

x

Solucao:
d d

y=In & :>—y:ey:>e_ydy:dx
dz dx

= /e‘ydy:/dx = —eY=x—c

=eV=c—ao = —y=In(c—2)

y=—In(c—x)

Exercicios:

Resolva as equagoes.

1) 2z+1)dy —3ydz =0
Solugao: + ambos os termos por y(2z + 1) fica:

dy 3dr
y  2r4+1

Iny — ;ln(Zx—l— 1)=Inc

1
Iny —In(2x +1)32 =Inc = — =Y e
2z +1)3
S =y =cy/(2x + 1)3
Vv (2x +1)3

ou
Y =2z +1)°
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2) (y*—1)dz — 2y +zy)dy =0

3)

Solucao:

(y* —1)dz —y(2+2)dy =0

+ ambos os termos por (y* — 1)(2 + z) fica:

dx

d
ydy _

2+«

y?—1

1
In(2 +x) — 5 In(y*>—1)=1Inc

2+«x

V1

In

=Inc = [y  —1=c(2+2)

ydr + (r+zy)dy =0

Solucao:
— Ty am
dz (1
— +

x

der dy

T

+ydy

ydr+z(1+y)dy =0

bos os termos:

0
Y

— 4+ —+4+dy=0=Inzr+hny+y=c
Yy

:>‘ln$y—|—y:c

dy .2

md$+y—y

Solucdo: © — = y? — =

olucao xd:c y -y = vy — 1) T

dz.  dy dy 1 A B
B AT S
x y y-—1 yy—1) vy y-—1
dr  dy  dy 0 Ay— A+ By=1

r oy y—1 (A+B)y—A=1

1 Iny —1 —1)=1

nr+lIlny n(y ) nce A+ B=0= A=—-B
n— —tne = ey =c(y — 1)

ny_l_nc y=-cly —A=1= A=-1,B=+1

dr — va? —22dy =0

Solucao:
dz

a?—zx

dx

a?—zx

=

-+ ambos os termos por va? — 2, fica:

s —dy=0

x
=dy = arcsen (—) =y+c
2 a
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= sen (y + ¢)

| ==

r =asen(y+c)

6) e Vdr+e'*dy =0
e’ eY
Solugao: —dz + —dy =0
- ¢e¥ er
X por e*e¥ ambos os termos:

= e¥dz+e¥dy=0
= %ln(ezx) + %ln(e%) =c

6.3 Equacoes homogéneas

Caso em que a funcao F(z,y) na equacdo y' = F(z,y), tem a forma de
fy/x).

d d
Por exemplo: o =r+y = Y _ 1+g’

dx dx x

corresponde a um tipo da equagao geral:
d

Y f (Q); neste caso, fazer:

dzx T

y:u:y:ux
T

d d
ﬁzmd—z+ = xd—u+u:f(u)
Esta tultima equacao é separavel, e pode ser escrita na forma:
du
dz_ du T +u=f(u)
z  flu)—u rdutudr = f(u)dz
du rdu= (f(u) —u)dz
1 = | —
r  flu)—u
Exemplos:
dy .
1) —= —2y+ 2 =0 (1* ordem, 1° grau, homogénea)

dx
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d d
Fazer: N d—y=u+xd—“
X i

du

= ;L’<u+x—> —2ux + 2 =0
dx

uwdz +zdu —2udx +dz =0

zdu —udx+dxr=0

rdu+ (1 —wu)dz =0

rdu=(u—1)dx

du dx

u—1
In(u—1)=Inz+Inc

Equacao cujas varidveis

podem ser separadas.

u—1=cx

Y 1=

x
_ 2

Yy=x+cx

d

2) x—y::v+y:>+xefazery:ux

dz

d d

dy Ly dwr) L ux

dx x dx x

dx

mas [y = ur| = y = ur = z{ln|z[ + c}

du dx
w+r—=14u = du=— = u=Inlz|+c
T

Exercicio: Achar uma curva que passe pelo ponto (0,—2), de modo que a
inclinacao da tangente em quaisquer de seus pontos seja igual a ordenada do
ponto, aumentada de 3 unidades.

Solucao: Equagao diferencial da familia de curvas que satisfazem a condigao
dada:

(%)1 % =y+3

Separando as variaveis e integrando obtemos:
dy

y+3

Separando as variaveis e integrando obtemos:
dy

y+3:dx = In(y+3)=a+c (%)
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Como a curva deve passar por (0, —2), temos:
ylx:O =2 <*)3

Fazendo (%)3 em ()9, encontramos o valor de ¢:
In|—2+3=0+c = In|l|=c =

A equagao (%), fica:
r=hly+3 = y+3=¢€" =

Exercicio: Achar a curva para a qual a inclinagao da tangente em qualquer
ponto é n vezes maior que a inclinagao da reta que une este ponto com a
origem das coordenadas.

Solugao:
dy Y dy
<2 =nZ to B = 2
dx n:v g dz
dy dz Y
— =n— tga = =
4 Y x T

,,,,, = Inly|=nln|z| +Inc

In|y|=In|z|"+1Inc
In |y = In (c|z|™)

y = cx"

d

Exercicio: x il +x+y=0
dx

Solugao:

d
Y14l og
dx T

dy

Ept _1_Q; fazer u =

SHESS

1
= — :>ln\x]:—§ln|1—|—2u|—|—ln0
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In|z| = In{|1 + 2u|~Y/2 . ¢}

c c
r=——— = 1=

V14 2u 1+2g
\/ T

x? <1+2Q> ==/
T

2+ 22y = ¢
.. dy 224y Yy
Exercicio: — = DY =uT; U= >
dr 2y—u x
Solucao:
du 22 +ux
ut+r——s ——
dr  2ux —2x
du 2+u

x£—2u_1—u

du_2+u—2u2—|—u

o 2u—1

du 2+ 2u — 2u?
rT— = —-
dx 2u—1

der (2u—1)
T 24 2u—2u?
dr  (2u—1)

r 21 +u—u?)
1
ln|x|:—§x1n|1+u—u2|+ln0

Injz|=In[1+u—u?"12.C

C L2 C?
r=— 2 =
V1+u—u? (V1 +u—u?)?
Cl
A ———R R e O
14+u—u?
2
xQ_i_gfo_y_. :Cl
x 27 #

!

4oy —y =C
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6.4 Equacoes lineares
Férmula geral: a,(2) y™ + a,_1(2) y™ Y 4+ ... 4+ ao(z)y = Q(x)

Equacoe lineares de primeira ordem podem ser escritas como:

Para resolver este tipo de equagao utilizamos o “fator integrante” que pode
ser obtido como descrito a seguir.

Inicialmente vamos examinar a equagao fazendo g(z) = 0. Ao realizarmos
este procedimento, além de linear, a equacao se torna separavel, podendo ser
integrada como uma equacao deste tipo. Entao:

() THI@=0= L=—f@) > dy=—f@)do

= lny:—/f(x)dx+c

y = Aefff(r)dz = yeff(:v)dx — A
Diferenciando a iltima equacao em relacao a x, fica:

d dy dA
dz {ye } dz ¢ ty-e f(z) dx

% Jf(z)dz _
:>(dx+f(x)y)e =0

0

A expressdao acima corresponde a equagao inicial (x) multiplicada por
I(x) = e/ 1@ o que leva a sua diferencial exata passivel de ser integrada
diretamente. I(z) é denominado “fator integrante”.

Voltando a equacao original, podemos escrever, apos multiplicarmos am-
bos os membros por I(x):

{ Lt s = 4 (n1(@) = )1

= yl(z) = /g(:z:)](:v) dz +c

dividindo por I(x), obteremos y como fungao de z.

d
Exemplo 1: il +y=e"
—  dz

Solucao: Fator integrante: I(z) = e//(®)dz — ¢z
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= 2 [yI@)] = g(a)

I(x)
%(yex):ex-ele = /%z/dx

= ye* =x+c
= y=(r+ce”

d
Exemplo 2: il +y = senzx
——  dz

Solucao: Fator integrante: I(z) = e//@)dz — ¢

d(ye®)
dx

=e’ senr = ye’”z/e”senxdx—l—C (%)

OBS: /ez- sen z dx

Integrando por partes:
u=e" du=e"dr

dv = senxdr; v =—cosz

= /ex - senxdr = e"(—cosx) — /(— cosx)e” dz

/exsenxdx = —e’fcosx—i-/e”cosxdx

Integrando por partes novamente
U=¢" dU =e*dx

dV =coszdx; V = senx

/e””sen.rdx = —e®cosx + e¥senx — /em sen z dx
= 2/exsenxdx = e”(senx — cos x)

1
/ex senzdr = 5 e*(senz — cosx)
Voltando a (x), fica:

1
= éex(senx—cos:c) +c

T

ye

y = é(senx —cosx) + ce””
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1) v/ + f(z)y = g(x); Fator integrante: | I = ¢/ /(®d

Exercicios:

= 2%y —y=0
y' + f(z)y = g(2)

2y oy 0 )
x2 2?2 a? f(x):—ﬁ
Y )

x2 = [ =i

z—1 —

/_%y: [=¢ T =¢

d(y - e* _
:%Zo;d(y-e@ ) =0de

B C <
:>y—egcf1 ouy—el/x

—1/z

= |y =ce

Outra forma de resolver; utilizando a transformada de Lagrange:

1

y = e Jf@)de {/g(m) el f@de qg 4 c}

y— () [ Jo- e an }

/

21
—1

(o | ) -
y=el o | [0-doe+c| =T [C+c=e¢-7 - -C

Yy = Ce V=

2) y —3y=6  OBS: Equagao do tipo |y + f(z)y = g(z)

{f(rr) = -3
g(z) =6

211
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I = ef(—S)d:c — o3

Multiplicar termos pelo fator integrante I = e=3%

gt fg
d(y - e™?)
— 6 —3x
dz €

6.5 Desintegracao radioativa e datacao de fésseis
pelo método do carbono-14

Vamos considerar uma populagao de atomos radioativos de um tipo e que es-
ses atomos tém a mesma chance de desintegracao, independente dos dtomos
vizinhos. Neste modelo, consideramos que, a taxa de desintegracao do con-
junto de atomos é proporcional ao nimero de atomos presentes em cada
instante.

Equacao diferencial do problema:

dN
— = —-A\N
dt

AN N(t): ntumero de atomos radioativos
= N —Adt no instante ¢
= In|N|=-M+c A: constante de desintegracao (posi-
o N = e Me tiva, na expressao)

= | N(t) = Noe ™|, com Ny = N(0)

ou seja, Ny é o n° de atomos radioativos no instante inicial da avaliagao da
populacao de atomos radioativos.
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N(t)

Meia-vida (intervalo At para o qual 50% dos atomos radioativos se re-
compoem):

N, = Noe—)\t; N, = Noe—)\(t—i-At)
= Ny = Noei)\tei/\At

Ny 1
= N, =N —)\At:> RN VAV 2N
2 1€ N, € 9

1
= —AAt=In (5) = —0,69315

~1In(0,5)  0,69315

T1/2 - At - )\ )\
\_ 2
T2

Atividade da amostra radioativa:
A=AN; A= ANge ™ = Age~

= A, [Q—t/Tuz]

OBS: (—) n° de periodo de meia-vida

1/2

Vida-média T

Seja uma fonte hipotética com atividade constante Ay, até o instante T,
quando todos os atomos da amostra se desintegram ao mesmo tempo. Vida-
média é a média aritmétrica do tempo de vida dos atomos radioativos da
amostra. Por exemplo, a vida-média (T') do Iodo-131, usado na composicao
de um sal para destruir células cancerigenas, é de 8 dias. Isto significa que em

média, cada atomo demora 8 dias para se desintegrar, ou que num conjunto
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de 8 atomos de lodo-131, apenas 1 atomo ird se desintegrar por dia, em
média.

1 _1
= >\Iodo-131 = gdiafl; T = X

Datagao radioativa utilizando carbono-14

Em altitudes muito elevadas da atmosfera, néutrons provenientes da acao de
raios cosmicos bombardeando atomos de nitrogénio-14, dao origem ao isétopo
radioativo carbono-14, o qual reage com o oxigénio do ar, produzindo CO,
radioativo. Este CO, radioativo juntamente com o CO4 nao radioativo (con-
tendo 1%C) ¢é absorvido pelos vegetais e ao longo da cadeia tréfica, chegando
a0s organismos.

Exercicio: Uma arvore ativa apresenta uma taxa de decaimento de carbono-
14 de 13,6 contagens por minuto por grama. Uma outra peca de madeira,
antiga do mesmo tipo de arvore, apresenta um decaimento de 3,2 contagens
por minuto, por grama. Perguntas: a) Estimar a idade da pega antiga de
madeira, considerando a meia-vida do carbono-14 como 5730 anos. b) Quan-
tas contagens por minuto, por grama seriam medidas, caso a peca antiga de
madeira, tivesse idade aproximada de 20000 anos?

Solucao:
a) N = Noe_)\t
In 2 In2 191 x 10-4
=—=—= or ano
T 5730 P

N N
N=Ne ™M= —=eM=In(—)=-X\
0¢ N, n(NO)

Ny = 13,6 32\ »

—(1,21 x 107%)t = In(0,23529)

t —1,4469 11958

= - = n
121 x 104 oS

b) N = N0€_>\t

N =13 66—(1,2097x10—4)(20000)
N = 13,6249 = 13,6 x 0,08897
N = 1,21 decaimentos/(min/g)
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Exercicio: Uma pega de madeira de uma tumba antiga, contém 40% do
carbono-14 por unidade de massa que esta presente em arvores ativas atuais.
H4 quanto tempo (na hipétese mais préxima da atual) o objeto foi cons-
truido?

OBS: usar meia-vida do carbono-14 como 5730 anos.

Solugao: Apds 5730 anos, o numero de atomos radioativos da amostra origi-
nal cai a metade.

N = Noe_At
1 1
5 = eiATl/z = In (5) = —>\T1/2
In2
2= ATy = A= ——
Ty
0,6931
= = (0,000120968
5730 ’

0,40 Ng = g e 00001209681
In(0,40) = —0,000120968¢

—0,91629 = —0,000120968¢
t = 7574,6 anos
|t ~ 7574 anos)|

6.6 Lei de Newton do Resfriamento

Considerar um corpo sem aquecimento interno com temperatura 7’ maior do
que o meio.
Como a temperatura vai baixar em funcao do tempo?

T=T(t); To=T(0); T, constante: é a temperatura do meio

Taxa de resfriamento: Podemos considerar:

T
(ji_t = —k(T —1T,), k: condicdo de troca de calor
dT
— = —kT + kT,
dt *
T
T(t) = Ae " + %7

condicao inicial T'= Ty quando t =0
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= T():A—l-Tr = A:TO—TT
= |Tt) =T, + (Ty — T,)e "

Como t — oo = 2° termo vai para zero

6.7 Lei de Lambert-Beer

Permite avaliar a atenuacao da intensidade da luz devida a absorgao por
moléculas de um determinado meio. Podemos afirmar que, para solucoes
diluidas, o decréscimo da intensidade da luz em fungao da espessura do meio
absorvente é diretamente proporcional a intensidade da luz incidente (Lei de
Lambert). Sendo:

I : intensidade da luz incidente
dI : pequeno decréscimo da intensidade da luz ao passar pela distancia dx

dl dl
——x] = ——=ul
dz dz #
Iy ! Iy : intensidade na face
= / T —H / dw anterior do recipiente
To 0 I; : intensidade na saida
— InJ g — ul apos tr/ajeto de
Io [ centimetros

I, = Iye ™! ou, no caso geral:

I = [ge*“z

Expressando na base de logaritmo decimais, fica:
log - a
og—=—(—7= |2

5T, 2,303

L
ou log — = —p'z, onde pf/ = ——
¢~ F M= 2303
A lei de Lambert acima, foi extendida por Beer, mostrando que, quando
a luz passa por uma solugao com dada espessura, a fracao absorvida depende
nao apenas da intensidade “I”, mas também da concentracao “C” da solugao.
Esta é conhecida como Lei de Beer:

—— xC.
dxoc
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As duas leis combinadas, permitem escrever:

d7 d7
—ﬁocfxCou —ﬁ—bIC

Quando a concentracao é expressa em mol-L~!, b é denominado coeficiente
de absorcao molar. Passando para a base de logaritmos decimais, temos:

I

log -~ = ——
08 = Tg303 XX

I
= ® log]—:—eC’x ,
0

onde ¢ = (b/2,303) é denominado coeficiente de extin¢do molar, expresso
em L'm~tem™. A expressio ® é denominada usualmente “Lei de Beer-
Lambert” ou “Lei de Lambert-Beer”.

Foérmulas associadas

Iy : Intensidade da luz
incidente na face
anterior da amostra

Iy I I : Intensidade da luz
log,, — =¢€lC (ou log;, — = —€lC :
S10 I ( S10 Iy ) transmitida
A ¢ : Coeficiente de
‘10 absorc¢ao (extinsao)
-1, -1
A=elC;A=eC (sel=1cm) molar, em L-mol™"-cm
I I C' : Concentracao em
_ _ —elC _ —1
T=—=10 %T = 100 x — mol-L
[0 IO

1 I [ : Comprimento do
A =logy, =" log,o T' = logy, 70 =elC caminho da luz na
solucao absorvente

A : Absorbancia

T : Transmitancia
Exemplos:
1) Qual a absorbancia de uma solugdo que possui uma transmitancia de
20% em um dado comprimento de onda?
Solucao:
20

T =2 T=—=0,2
% 0= 100 0,
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A= —log,, T = —log,, 0,2 = —(—0,699) = 0,699

Se a dissolucao no exercicio anterior consistir de espécie com concen-
tracao de 2,30 x 10~* M, e considerando uma célula de anélise de 2 cm
de espessura, qual devera ser a concentracao da solucao para se obter
uma transmitancia de 8%?

Solucao:

log,, T M =mol-L™*
1C (molaridade)

€ =

B log 0,2
 2emx23x1074 M

0,699
= ’ = 0,1520 x 10*
(2><2,3><10—4> 0,1520 % 10

= 1520 Mol~! - em™!

O — _logy T _ — logy (105) _ —1og,((0,08)
el 1520 M~ ' -em—! x 2 em 1520M x 2

11,0969

M = 10~*M
2010 3,6 x 10

Um dado composto apresenta absorbancia maxima a 275 nm, de €g75 =
8400M~t.cm™!, sendo a largura da cubeta do espectrofotometro de
1 cm. Neste comprimento de onda, foi medida uma absorbancia de
Aoz = 0,70. Qual a concentracao do composto acelerado?

Solucao:
A=¢€lC; 0,70 = (8400M ' -cm™) x (lcm) x C
C = 8,33 x 107 Mol-L !

Seja uma solucao contendo uma substancia na concentracao de 4 mol-L 1.
Considerando uma largura de cubeta do espectrofotometro de 2 cm e o
fato do que 50% da luz incidente seja transmitida, calcule o coeficiente
de absorgao (e).

Solucao:
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Pela Lei de Beer-Lambert:

1 0,5
logy, I_o = —log;, <1;O) =A=8 = €=0,03 M tcm!

5) No exemplo anterior, quanto do feixe é transmitido quando a concen-
tracao vale 8 mol-L~1?

Solugao:

It
log,, (7‘)) —€lC

logo(1) — logy(I) = 0 — logy(I) = 0,0376 x 8 x 2 = 0,6016
= ]transmitido - 0,2503 =~ 25%

6.8 Reacgoes Quimicas

Imaginemos uma reacao do tipo: A + B — C + D, iniciando com os rea-
gentes A e B, para a qual a velocidade do desaparecimento de A é proporci-
onal a concentracao de A em cada instante. Neste caso, podemos escrever:

d[A]

BT oc [A]

Se isto ocorrer também para B, de forma independente de [C] e [D], fica:

i

= x [AB] =

onde a constante de proporcionalidade k é a constante de velocidade, e a
equacao acima, a equacao de velocidade. A constante k é independente da
concentracao de A e B, mas depende da temperatura.

Ordem da reacgao:

A ordem da reacao relativamente a uma dada espécie quimica, é dada pelo
expoente da concentracao da espécie na equagao.

Ex.
1?* ordem em relagao a X

= k[X][Y)? 2% ordem em relacao a Y
3% ordem global
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Areacao A + B — C + D, como indicado acima, é uma reagao de 1* ordem
em relacao a A e B.

Seja uma reacao do tipo A — produtos, de 1* ordem, representada
pela equagao:

= gt

= In[A] = —kt+In[Aly  (¥)

ou

A representagao de (x); em um grafico semilogaritmico, leva a uma reta, com
inclinagao tgx = —Fk, pois

In[A] = —kt+1n[A]y
—_— =~ T
Y ax
In[A]
In[A]o tga = —k
d[A]
S dt
[A]

Grafico de ® 1

[Alo [A] = [AJoe™*?

Grafico de )2
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Meia-vida:

221

A meia-vida de uma reagdo, corresponde ao tempo necessario para que a

concentracao do reagente caia a metade do seu valor inicial.

Usando ®1 :>III[A] =—k tl/g + IH[A]O
ktl/g = IH[A]O - ln[A]1/2

IH[A]O ln[A}O

Y27 1AL 27 1AL
In2 0,653
= =TT

Exercicio:

1) Escreva a equagao da velocidade e determine o valor da constante de

velocidade para a decomposicao térmica da fosfina a 680°C.

4PH;(g) — Pu(g) + 6 Hy(g)

Dados:

— velocidade inicial da reacao: 1,98 x 10~* mol-L=!.s™! para [PHj]

inicial de 1,00 x 1072 mol-L};

— velocidade inicial de 8,91 x 107* mol-L~*-s7!, quando [PHj] inicial

for de 4,5 x 1072 mol-L~!.

Solucao:

PH; (mol/L) | velocidade (mol-L~'s7")

1,00 x 1072 1,98 x 10~*
4,50 x 1072 891 x 1074

Para verificar a ordem da reacao:
4,50 x 1072

1,00 x 10-2
8.91 x 10~

1,08 x 104
d[PHy]
dt
o _ dIPHgJ/dt _ 1,98 x 107

PH, 1,00 x 102

=4,50 x 1072
= 1% ordem
= 4,50 x 1072

Equacao: = —k[PH;]

=1,98 x 1072 mol-L~t.s7!
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6.9 Equacao fundamental da Hidrostatica

Para um fluido incompressivel podemos considerar p = cte.

p: pressao
dp - . :
Y 4+ pg= z: posicao no eixo vertical
dz p: densidade do fluido
dp=—pgdz g: aceleragao da gravidade
P2 22
/ dp=—pg / dz <
p1 21
pr—p1=-pg(z2—2)  paanssaas ; -
Ap = —p g Az (eixo orientado para cima) E fluido

Ap = pg Az (eixo orientado para baixo) TS

A diferenga de pressao entre dois pontos num fluido em equilibrio, é nu-
mericamente igual ao peso de uma coluna de liquido de secao reta igual a
unidade de area e altura igual a distancia entre os dois planos isobaricos que
passam pelos pontos.

Esta equacao também pode ser aplicada a variagao de pressao em gases,
como na atmosfera.

Exemplo: Variacao da pressao atmosférica com a altitude. Vamos considerar
como aproximacao a temperatura constante.

Solucao:
dp . . .
1 + pz =0, considerando o eixo z apontando para cima.
z
Dividindo ambos os membros da igualdade por p, fica:
1d
——p+£g:0; Fazer k =
pdz p p
1dp
pdz TFI= OBs: 2 = [« massa
1 p pV < volume
Ly gdz T .
P pressao
Inp=—-kgz+c
= p_ cte, pois:
p=Ae " A=pg p ’

z m = cte, pV = cte em funcgao da
aproximacao inicial 7' = cte
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Exemplo préatico: a 20°C, 1L de ar tem massa ~ 1,3g; pressao normal =
1,0 x 10° N/m?.

= P a0t o p—13%107% kg/N-m
Po

= P — =27 com 2 em km.
Po

10°

10~2

6.10 Liquidos em rotacao

z
Forga
centripeta

liquido 3 | E

2
mwz < f ;g
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Seja a equacao da meridiana (se¢ao da superficie por qualquer plano que
passe pelo eixo de simetria):

dz 2y
dr 29 F: resultante das forgas de superficie é L
N T / v da a superficie livre (is6bara)
9 . :

o2 Peso (m g): vertical
z = +c Resultante (mw?z): Forga centripeta =

pl E+P

2 +

1w,
z2==—

29

OBS: A meridiana é uma parabola.

6.11 Mobdulo de Elasticidade e Mdédulo de Re-
siliéncia

Na caracterizacao mecanica dos materiais e biomateriais, o “ensaio de tracao”,
quando possivel, é um dos mais importantes.

Seja uma barra metdalica cilindrica, como a da figura abaixo, presa em
uma das extremidades com secao transversal de area Sy, onde estda marcada
uma distancia Lg, como indicado.

@: Forga de Tracao

So: Area da secao transversal

Ly: Distancia de referéncia
AL .
e = —: Deformacao
: Lo
K visao lateral visdo frontal AL Acréscimo devido é} for(;a Q
da barra da barra
. Forca
o = —: Tensao = —
So Area

A tens@o média na barra é dada por 0 = ()/Sy, e sua aplicacdo causa
aumento de AL na distancia original L,. A deformacao média serd o =
AL/ Ly.

A tensao o corresponde a grandeza Forga/ Area, enquanto € é adimensio-
nal.

Para um corpo de prova metalico, é possivel obter um gréfico Tensao x
Deformacao, que da diversas informagoes sobre as propriedades do material,
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em particular o “mddulo de elasticidades” E = o /e ou “médulo de Young”.

N = inicio do ensaio de tracao, o tragado é linear, sendo F = o/e, o
coeficiente angular da reta.

A linearidade do diagrama termine num ponto denominado “limite elastico”
(A). Tentos acima deste valor causam deformagoes permanentes. Em sequéncia
ao ponto A obtém-se o ponto A’, denominado “limite da proporcionalidade”.

Terminada a “zona elastica” atinge-se a “zona plastica”. Nao ha mais
proporcionalidade entre tensao e deformagao.

zxr

Limite de resisténcia: o, = —, @),: carga maxima atingida durante o ensaio.

So
Ap6s esta fase, (atingida (),) entra-se na fase de ruptura material.

Moédulo de Elasticidade “E”

“E” é constante para cada metal ou liga metalica. Médulo de elasticidade é
a medida da regidez do material.

€a < €p
Ep= 2
€A A E4 > Ep
S A B B ~ . . . . .
o Al Bp=2% Comparagao entre a rigidez de dois materiais
?
z e (A e B).
ﬁ | |
€A | Deformacao € 1 4 s :
— OBS: F x T o médulo da elasticidade varia
B .
Inversamente com a temperatura.
Resiliéncia

Resiliencia é a capacidade de um metal em absorver energia quando defor-
mada elasticamente, e liberd-la quando descarregado. Sua medida é feita
pelo “modulo de resiliéncia” = Energia de deformacao por unidade de vo-
lume, necessaria para tensionar o material da origem até a tensao do limite
de proporcionalidade.

Modelo de Resiliéncia

U, = O trabalho exercido para tensionar até o limite de proporcionalidade.
E igual a tensao média multiplicada pela deformacdo €, causada.

, 0p: limite de proporcionalidade
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O mddulo de resiliencia pode também ser obtido considerado a parte
elastica do diagrama tensao-deformacao. Tensionando o espécime do ponto

CAPITULO 6. EQUACOES DIFERENCIAIS

Ur

~2E

2
UP

p ao ponto p’, o trabalho executado é o de.

_ %
2
E 0;
V= (5) (ﬁ

Tensao o

Ip

B B’

Exercicio: Mostre que a grandeza de U, pode ser: Energia/Volume.

6.12 Equacao de van der Waals e o ponto

de k—

critico de um gas

Diversas equacoes procuram modelar o comportamento de gases reais, dentre
as quais, a equacao de van der Waals, se destaca. Diferente da equacao dos
“gases perfeitos” ou “gases ideais” (pV = nRT ou p = nRT/V), a equagao

Deformacao €
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de van der Waals leva em consideragao o volume ocupado pelas moléculas
do gas e suas propriedades especificas quanto as interacoes intermoleculares
e consequéncias na pressao final do gas, num dado recipiente.

Equacao de van der Waals

- nRT <n>2

v “\v

Equagao em fungao do volume molar

p: pressao do gas

V. volume do recipiente
n: n° de mols

R: constante dos gases
T temperatura absoluta

(Vo =V/n): a, b: constantes de van
RT a der Waals, caracteristicas de
p:Vm—b_W cada gas
V,, = —: volume molar
n
OBS:

1)

2)

Verifique que, quando V,, alto, a expressao tende para a dos gases
perfeitos (p = nRT/V) pois V;, — b~ V,, e a/V2 — 0.

Para substancias puras, a isoterma critica (diagramas p x V') apresenta
um ponto de inflexao, o que significa que a 1* e a 2% derivadas de p em
relagdo a V,,, a T' constante (isoterma critica) neste ponto sao nulas.

Escreve-se: 5 52
P ~0: p —0
OV ) ¢ ov?2 T

Entao, para calcular p., V. e T, (critico) temos a equacdo original e
outras duas novas equagoes.

Esta condicao fisica é fundamental para uma aplicacao biolégica: a se-

cagem de uma amostra bioldgica para posterior observagao por microscopia
eletronica de varredura (MEV), com méaxima deformagdo do material origi-
nal. Pelo fato do material bioldgico ser rico em dgua, e a tensao superficial da
agua ser relativamente alta, o “método do ponto critico” é de fundamental

importancia para analise de células e tecidos.

Exercicios:

1) Obter a expressao da equagao de van der Waals em fungao do volume
molar (V,,,) e discutir as condigoes que levam ao comportamento do gas

perfeito.
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Solugao:

. . nRT n\?2
Equagao original p = ( )

v “\v

Dividir os numeradores e denominadores do 1° e 2° termos & direita da
igualdade por n. Fica:

nRT n 2 v
_ . n_ n . A
P= vy — 0| v | scom —= Vin
n

n

Obter os valores de p, V' e T" para o ponto critico, usando a expressao
de van der Waals (use a expressao em funcao de V,,,).

Considerando que temos uma funcao de varias variaveis, e que o ponto
critico ¢ um ponto de inflexao na curva p x V', devem ser utilizadas as
seguintes 3 equagoes:

_ BT L () e (22
=y, =y “vz\ov, ), “\ovz). .~

Solucao:
2
O ponto de inflexao implica % =0e g—é = 0.
Calculo das derivadas:
op RT RT 2a
—_— S —— ) ) Vet ) [ — —
QW)T (0 A VA B
0*p 2RT 6a
— | =—-RT(-2)(V,, —=b)3—6aV 4= ——"—T— _ — —
(v%), = o s v = 2 -
dp RT 2a 3 e soma as duas
) =0l e -~
(avm)T (Vi — D)2 + V3 0« x V.,  expressoes
Pp\ 0 2RT ~ 6a 0
ov2 ), n (Vi —0)2 V2 B
3RT, 2RT.,

- 0=0
V.V—b) (Vioop

2Bt 3B 2 —3:21/,;:3\/0—319

T Wby Vv Vb W,
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- [7o=9]

OBS: T.: temperatura critica

V.. volume

critico

229

Usando este valor de V. na equagao dp/dV,, = 0, para encontrar T,

fica:
RT, 2a
- + -
(Ve—=0)2 V2
RT. 2a
T
47 27h#

0= — RT. n 2a 0
B (3b—1)2 "~ (3b)3
8a
T, =
0= 11e= 57

Para encontrar a pressao critica (p.), voltamos & expressao original:

pcz‘f?b—%,com%:i’)beﬂ:%
JDCZR—X%—i
3b—10 92
g0 &
©2Thbx 2b  9b2
oop o Ba a
27T xR 9p?
_da a
pc_ﬁ_@
~4a—3a | a
Pe= o2 ~ 2w

6.13 Reacoes de Segunda Ordem

Seja areacao A+2B — produto, cujos dados de concentracao e velocidades
de reacao para cada componente, estao informados na tabela:

N° do [A] inicial, | [B] inicial, | Velocidade inicial
d/A
experimento | mol-L~1 mol-L ! —%, mol-LL—1.¢~1
1 0,246 0,269 0,122
2 0,492 0,269 0,488
3 0,246 0,538 0,122

Seja determinar a ordem de reacao para os reagentes A e B.
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OBS: [A] : concentracdo do reagente A em mol-L™;

[B] : concentragdo do reagente B em mol-L™;
d[A]

——— : velocidade de A, em mol-L~t.s7!

dt
Solugao: Ordem para A:

- Al 0,492
Vi de A: === —— =
ariacao de AL 0,246

an) (%), oass
dt - (_M> S 0,122

dt

Considerando que a concentracao de A dobrou, enquanto que a velocidade
correspondente quadriplicou, concluimos que a reagao é de ordem 2, o que
leva a equacao de velocidade:

4

Variacao de —

d[A]
S dt

Resolvendo a equagao diferencial (por separacao de varidveis), temos:

— k[A]?

d[A] = : condicao inicia = emi =
_/[A]Q_/kdt, dic 1 [A] = [AJo em ¢ = 0

1 . 1
A= ftte = t=0= [Al=[A = oy =k

Para esta expressao, podemos plotar uma reta, com ¢ como abscissa e 1/[A]
como ordenada, o que pode ser pratico, experimentalmente, e uma carac-
teristica especifica para reacoes de 2% ordem.

11l

DN NSNS IPANEIES Q

@ fl)=t+1, (0<t<oco)

&

o
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Isolando [A] obtemos a expressao cartesiana para [A] em fungao de t.

1 1
—— =kt + ——; fazendo [A] = y

[A] [Alo
1
—=kt+c=1=Fkty+cy
Y
= 1=y(kt+c) = L
= C —
Y Y kt + ¢
1
Parat =0, temos yp = — = |[c = —
¢ Yo
[, 1
Yo L
Yo
1
= A= ——
(e 2004 N =+ a=
- =

@ =5y (0<t<w)
:

Exercicio 2: Seja uma reagao do tipo 2A + B — C + 3D, cujos dados de
velocidade iniciais sao dados na tabela:

d[A
[Alinicial mol-L™% | [Blinicial mol-L ™1 (—L> mol-L~1.s7!
inicial

dt
0,127 0,346 1,64 x 1076
0,254 0,346 3,28 x 1076
0,254 0,692 1,31 x 107°

Perguntas:
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a) Qual a equacao de velocidade (—d[A]/dt) da reagao?

b) Qual o valor da constante de velocidade?

¢) Qual a velocidade de consumo de A, quando [A] = 0,100 mol-L ™! e [B] =
0,200 mol-L =17

Solucao:
_da]
g o (W),
A, 0127 7 (_M>
dt 1

= grau 1 para A

_@>
Bl _ 0,692 ( )y,

B], 0346 (_@)
b/
= grau 2 para B
d[A
= Equagao: —% = k[A][B]?

b) Valor da constante de velocidade

d[A] i
—& 1,64 x 10
k = dt — ) 1 08 10_4 1 L_l -
[AJBE ~ 0,127 x (0,346)2 (mo )%s
ou
3,28 x 107
= 055 — 1,08 x 10~4(mol - L1)2s~1
0250 x (0346 1208 X 107 (mol - L)%
ou
1,31 x 107

T 0,254 x (0,692)2 = 1,08 x 10~4(mol - L™1)2s~!

d[A
0 <_M> — 1,08 107 x 0,1 x (0,2)% = 1,08 x 107 x 0,04
[A] = 0,100

dt
[B] = 0,200
d[A] B — S—
- (_ dt )[A]:O,loo_ 4,32 x 10" 'mol - L™ - s

[B] = 0,200
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6.14 Exercicios

1) Um nuclideo radioativo é fabricado numa razao de 8 nuclideos por
segundo, mas ao mesmo tempo, o nuclideo se desintegra em funcao de
N, onde N é o numero de nucleos presentes em cada instante. Escreva
a equacao diferencial deste problema e resolva a equagao. Considere
a situacao onde o nimero de nicleos do nuclideo a ser produzido no
instante inicial, seja zero. Desenhe o grafico de N em fungao de t.

Solugao:
dN dN k k
a 7 de g( g >’g P
dN dN
= & g1 —pN) = — gdt
3 — 91 -pN) N Y
= —In|l —pN|=gt+c
In|l1—pN|=—-gt+
1 —pN = Ae 9
pN =1— Ae 9
1
= N=>(1—Ae¥) = |N = %(1—,4@%)
p

condicdo inicial: N(0) =0 = 0 = %(1 —A)

= AY=9 o (A=)

= N(t) =

ENIRS

(1 —e9)

N(t)

2) Variagdo do numero de individuos de uma populagdo, em funcao da
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taxa de natalidade, taxa de mortalidade e imigracao.

Escreva uma equagao diferencial (e apresente uma solugao) que re-
presente um processo de nascimento, morte e o efeito de imigracao.

Considere N(0) = Np.

Solucao:

dN

— = AN — uN +v;
1 N + v,
comA>0; u>0:v>0
dN

— =A—pu)N

g = AN+

OBS: Equacao do tipo mostrado no box a
direita; y' = ay + b

= N(t) = ceP—mt — v

A—p

Como N(0) = Ny, a solucao particular fica:

NO_C_ﬁ = C_No‘i‘)\i
1%
= N(t) = (N _|__) e(A—mt _
( TN A—p
=><N@):]WﬁQ7Mt+AL/ (X1t _ 1)
— p

Comentérios:

N(0): n° de individuos no ins-

tante ¢
A: taxa de natalidade
u: taxa de mortalidade

v: termo relacionado & imigragao
(independente de N(t))

d

d—‘z:ay—i-b; com a # ()
dy

-7 L

3 = Ayt k)

dy = a(y + k)dt

dy

—— =qadt

y+k ¢

Inly + k| =at+C

Y+ k = £e¥C = e com
c
c=*e

= |y =ce” — —

— Caso a taxa de mortalidade seja maior do que a de mortalidade (A >
1), a populagao crescerd. Em caso contrario, a populagao decresce.

— Caso A = u, a populacao se mantera estavel.
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A>

A< p

3) Lei de resfriamento de Newton

Isaac Newton desenvolveu uma férmula para calcular a temperatura
de um material a medida que perde calor. Seja um corpo sem aqueci-
mento intenso, com temperatura mais elevada do que a sua vizinhanca,
considerado como um reservatério de calor, ou seja, cuja temperatura
¢ mantida, enquanto o corpo original se resfria.

Qual a equacao diferencial que representa a variacao da temperatura
do corpo em fungao do tempo? Condigao inicial 7'(0) = Tp.

Solucao:
dT
S = —k(T — T,)
dT
—(T ~ 7o) = —kdt
In(T — Ty,) = —kt+C T: temperatura
T — T, = e FHC t: tempo
(x) T =ceM+Ty k: constante dependente da troca de calor
condigao inicial 7'(0) = Ty Tyiz: temperatura da vizinhanca, mantida
= To=c+ T = c=Ty— Ty,  cONstante
em (%) fica:
= T(t) = (Ty — Tuz)e * + Ty,
= T(t) = Tyiy + (To — Toip)e ™™

Comentarios:

t=0=T0)=Tg +To— T =Tp
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Apeéendice A
Tabelas

f(x) f'(x)
a (a constante) 0
" nz™ 1 (n inteiro # 0)
e’ e’
a® a®lna (a > 0)
1
Inz ; (l’ > O)
1
log, « —— (@>0)
sen x cosx
cos T —senw
tgx sec?
secx secx tgx
COSSeC T — cossec ¥ cotgx
cotgx — cossec’x
1
arcsenx 1—_1:2 (Jx] < 1)
-1
arccos = (lx] < 1)
1
arctgx T 22
1
arcsec r PN
TVt —
-1
arccsc S —
|z|va? —1
-1
arccot x



f(z)

/ (@) dz

a, a constante

sen
COS T
tgx
cotgx
sec? x
cossec’x

secx tgx

cossec xr cotgx

azx + ¢ (¢ constante)

+ ¢ (n inteiro # —1)

In|z|+c

et +c

+c(a>0ea#1)

—Ccosx +c¢
senx + ¢
In|secz| + ¢
In|senz|+c
tgx +c
—cotgx + ¢
secx + ¢

—cossecx + ¢
arcsenzx + ¢
arccosx + ¢

arctger + ¢
arccotx + ¢

arcsecx + ¢

arccscx + ¢
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