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3.1.7 Limite de uma função à esquerda de um ponto . . . . . 109

3.1.8 Função cont́ınua . . . . . . . . . . . . . . . . . . . . . . 109

4 Derivadas 113

4.1 Processo de Diferenciação . . . . . . . . . . . . . . . . . . . . 117

4.2 Regra da Cadeia . . . . . . . . . . . . . . . . . . . . . . . . . 122
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SUMÁRIO v

5 Integrais 167
5.1 Propriedades da Integral definida . . . . . . . . . . . . . . . . 170
5.2 Técnicas de Integração . . . . . . . . . . . . . . . . . . . . . . 174

5.2.1 Integração por substituição ou mudança de variável. . . 174
5.2.2 Integração por partes . . . . . . . . . . . . . . . . . . . 179
5.2.3 Método das Frações Parciais . . . . . . . . . . . . . . . 184
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Caṕıtulo 1

A Matemática está em tudo

Alguns exemplos:

1) Dobrando as dimensões lineares de uma figura plana, a área quadru-
plica.

b

b

b b

A1 = b2

2b

2b

A2 = 4b2

OBS: Multiplicando cada dimensão linear por n, a área passará a ser
n vezes a original.

2) As intensidades luminosa e sonora de fontes pontuais, caem com o
quadrado da distância à fonte.

A grandeza intensidade (I) é definida como:

Energia
tempo

Área
. Em unidades do

Sistema Internacional de Medidas temos: I =
Watt

m2
.

1



2 CAPÍTULO 1. A MATEMÁTICA ESTÁ EM TUDO

Fonte

a 2a

A1

A2

d1

d2

Seja
d2
d1

= 2

A1 = a× a = a2

A2 = 2a× 2a = 4a2

3) A intensidade da luz na imagem pelo microscópio óptico, cai com o
quadrado do aumento, para uma mesma fonte, onde se mantém fixa a
intensidade da fonte (consequência do exemplo 2, acima).

I ∝ 1

M2
; onde M representa o aumento.

4) Frequências sonoras de ressonância no meato acústico externo da ore-
lha. No desenho, está representada esquematicamente a orelha externa,
aberta no pavilhão da orelha e fechada na membrana timpânica. Entre
as duas estruturas, o meato acústico externo, cujo comprimento é de
cerca de 2,5 cm.

Portanto, para efeitos de ressonância sonora, o meato acústico externo,
é um tubo aberto de um lado, e fechado no outro. Então, o maior
comprimento de onda (λ) de ressonância neste tubo, terá um valor
quatro vezes maior do que o comprimento do tubo.

abertura timpânica
membrana

≈ 2,5 cm

1
4λ
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Considerando a velocidade do som no ar v = 340 m/s e o comprimento
de onda λ = 4× 2,5 = 10 cm = 0,1 m corresponde ao som mais grave
de ressonância no tubo, podemos calcular a frequência de ressonância
no meato acústico externo, pois:

v = λ× f =⇒ 340 m/s = 0,1 m × f =⇒ f ≈ 3400 Hz

Verifica-se que esta frequência corresponde à frequência da fala, o que
quer dizer que o meato acústico externo amplifica frequências que che-
gam à orelha correspondentes às da fala!

5) Aumento máximo do microscópio óptico. O olho humano é capaz de
discernir dois pontos (em alto contraste) distando 0,2 mm entre si,
quando observados em um anteparo a 25 cm do olho.

Já o microscópio óptico, em razão do fenômeno da difração da luz
no orif́ıcio da lente objetiva, distingue dois pontos luminosos distando
entre si 0,2 µm (micrômetros). Qual o aumento máximo proporcionado
pelo M.O.?

Solução:

M =
0,2 mm

0,2µm
=

0,2× 10µm

0,2µm
= 1000×

“Mil vezes de aumento”.

6) Números “f” de objetivas fotográficas. Estes números determinam a
abertura da lente, em função do diâmetro do diafragma, o que deter-
minará a intensidade da luz no chip da câmara fotográfica.

Ex.: Com o diafragma fechado de forma a gerar uma abertura de 5 mm
de diâmetro, para uma objetiva de 110 mm de distância focal, temos:

Número “f”:
f

22
=

100 mm

22
= 5 mm

Sequência de “números f” para uma lente objetiva é a seguinte:

f

2
;

f

2,8
;
f

4
;

f

5,6
;
f

8
;
f

11
;
f

16
;
f

22

Se fizermos os cálculos das razões entre os denominadores consecutivos
das diversas frações acima, encontraremos:

2,8

2
≈ 4

2,8
≈ 5,6

4
≈ 8

5,6
≈ 11

8
≈ 16

11
≈ 22

16
≈
√
2
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Isto significa que variando a abertura em um passo no sentido horário,
ou anti-horário teremos a área da entrada de luz dividida por 2 ou
multiplicada por 2, considerando que a abertura do diafragma da lente
é circular, e a área do ćırculo é 4πR2, onde R varia, em relação aos
vizinhos, por um fator

√
2.

7) Escala vernier

Pierre Vernier foi um matemático francês nascido no final do século
XVI, inventor de instrumentos, dentre os quais, aquele utilizado para
medidas de objetos ou projeções métricas, que leva seu nome: a escala
vernier. Esta escala é adaptada em paqúımetros. Como exemplo (figura
abaixo), representamos uma situação em que o paqúımetro permite
medidas em até décimos de miĺımetro:

Neste desenho esquemático, a escala superior está calibrada emmiĺımetros
(por exemplo). A escala inferior, apresenta 10 partes igualmente espaçadas,
para um comprimento correspondente a 9 partes, na escala original.
Isto significa que, deslocando lentamente a escala inferior para a direita,
suas linhas divisórias irão coincidir com as linhas acima, na ordem 1, 2,
3, . . . até que o zero da escala inferior coincida com o “1” da superior, o
que simultaneamente ocorrerá para o “10” da inferior, relativamente ao
“10” da superior. Teremos 10 pontos de coincidências em sequência,
para cada posição numérica da escala superior, mostrando que, com
a escala vernier apresentada, nosso sistema adquire a possibilidade de
medir de 0,1 em 0,1 unidades da escala original, o que aumenta nossa
precisão em 10 vezes.

A figura ... representa um paqúımetro, com um corpo de referência,
onde são gravadas as escalas em cent́ımetro e polegada. Na parte me-
nor, móvel estão as escalas vernier, para frações de miĺımetros (abaixo)
e frações de polegadas (acima).
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Exemplo:
Seja medir o objeto azul com um paqúımetro. Na representação do
instrumento (figura abaixo) a escala superior é fixa, enquanto a infe-
rior se desloca para permitir a medida da dimensão linear do objeto.
Considerando a escala de referência em miĺımetros, verificamos que o
objeto mede 5 mm + 0,5 mm (a escala inferior coincide com a superior
na quinta marcação). Portanto, o comprimento vale 5,5 mm.

8) Proporção Áurea

Proporção áurea, razão áurea, número de ouro, número áureo, número
mágico, secção áurea, proporção de ouro, tem sua origem na Grécia,
antes mesmo do tempo do matemático Euclides, que a descreveu na
proposição: dividir um segmento de reta em média e extrema razão.

Diz-se que o ponto C divide o segmento AB em média e extrema razão,
se a razão entre o comprimento do maior segmento e o do menor dos
segmentos produzidos for igual à razão entre o segmento original e o
maior segmento produzido. Esta afirmação é equivalente a dizer que,
na figura abaixo, o comprimento dos segmentos AB, AC e CB, isto
é, “a + b”, “a” e “b”, formam uma Progressão Geométrica. Então,
podemos escrever:

a

b
=

a+ b

a
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A C B

a b

a+ b

Consideremos a igualdade
a

b
=

a+ b

a
. Se dividirmos ambos os membros

do segundo termo desta igualdade por b, e fazendo
a

b
= x, teremos a

expressão:

x =
x+ 1

x
, a qual corresponde à equação do segundo grau x2 = x + 1

=⇒ x2 − x− 1 = 0, cujas ráızes são:

x =
1±
√
5

2

Podemos separar as duas ráızes como:

x1 = +

√
5 + 1

2

x2 = −
√
5− 1

2

Considerando a ráız positiva, pois a raiz negativa corresponde a um
ponto C exterior ao segmento AB, temos:

x =
a

b
=

√
5 + 1

2
= 1,61803398875 . . .

A este número, indicaremos pela letra grega φ.

A proporção que leva ao número φ, é associada a um senso de harmonia
e beleza tanto nas artes gráficas, como em alguns monumentos arqui-
tetônicos históricos e na natureza, como no padrão de organização da
formação de sementes em flores, em caracóis, conchas marinhas, etc.
Entretanto, não há comprovação cient́ıfica de que a proporção áurea
seja um requisito para tornar objetos agradáveis, esteticamente.

Alguns exemplos de expressões matemáticas e figuras geométricas que
levam ao número φ são dados abaixo:
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1) Sequência de Fibonacci.

No século XVIII, o matemático italiano Leonardo Fibonacci ela-
borou uma sequência numérica infinita que se tornou bastante
popular.

Começando pelo número 1, cada próximo termo da sequência, é
formado pela soma de cada numeral com o número que o antecede.
Os primeiros números dessa sequência são os seguintes: 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89 . . . Verifique a obtenção de alguns dos
termos: 1 + 1 = 2; 2 + 1 = 3; 3 + 2 = 5; etc.

O limite das razões entre cada termo e o antecessor aproxima-se
do número Phi (φ), como mostrado abaixo:

2

1
= 2 ;

3

2
= 1,5 ;

5

3
= 1,666 . . . ;

8

5
= 1,6 . . . ;

13

8
= 1,625 . . .

2) Série de frações sucessivas

A aproximação do número áureo φ também é obtida quando apro-
ximamos uma representação da série de frações usando números
“1”, como mostrado abaixo

a+
1

b+
1

c+
1

d+ e

1, 1 = 1 +
1

1
= 2 ; 1, 1, 1 = 1 +

1

1 + 1
2

= 1 +
1
2
3

= 1 +
3

2
= 1,5 ;

1, 1, 1, 1 = 1 +
1

1 + 1
1+ 1

1

= 1 +
1
3
2

= 1 +
2

3
=

5

3
= 1,666 ; etc . . .

3) Figuras geométricas:

- Proporção áurea no pentágono regular
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- Proporções áureas no pentagrama

a

b
=

b

c
=

c

d
= 1,618 . . . = φ

- Combinando o pentagrama e o pentágono regular (considerando
as mesmas letras do desenho anterior).

O matemático canadense W. W. Sawyer em seu livro “A Prelude to
Mathematics - Dover Publications, Inc. New York, 1982” afirma:

“A Matemática é a classificação e estudo de todos os posśıveis padrões. . .
Padrão é para ser entendido num sentido bastante amplo, de tal forma a
cobrir quase qualquer tipo de regularidade que possa ser reconhecida pela
mente: A vida, e certamente a vida intelectual, só é posśıvel porque há cer-
tas regularidades no mundo.”

Padrões elementares são encontrados em tabelas de multiplicação.
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Múltiplos de 2× e 5× são fáceis de identificar, pois na tabela de 2× os
d́ıgitos finais são pares e na de 5× são “0” ou “5”.

Algumas outras regularidades são mais dif́ıceis de identificar, como por
exemplo as da tabela 7×. Veja:
Os d́ıgitos finais de 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, são:

7, 4, 1, 8, 5, 2, 9, 6, 3, 0, e as diferenças entre os vizinhos, a partir da
esquerda, são:

−3, −3, +7, −3, −3, +7, −3, −3, −3, o que mostra um ritmo aparente.
Além disso, os d́ıgitos finais da tabela de 7×, lidos de trás para frente, são
aqueles da tabela de 3×!
Verifique: 3× 0 = 0, 3× 1 = 3, 3× 2 = 6, 3× 3 = 9, . . ., 3× 9 = 27.
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Caṕıtulo 2

Relações e Funções

2.1 Produto Cartesiano

A×B = {(x, y)|x ∈ A e y ∈ B}

A = {1, 2, 3} e B = {2, 4}

A×B = {(1, 2); (1, 4); (2, 2); (2, 4); (3, 2); (3, 4)}

B × A = {(2, 1); (2, 2); (2, 3); (4, 1); (4, 2); (4, 3)}

OBS:

a) A×B ̸= B × A

b) A×B = ∅ ⇐⇒ A = ∅ ou B = ∅

c) A×B ̸= ∅ ⇐⇒ A ̸= ∅ e B ̸= ∅

2.1.1 Relações Binárias

Qualquer subconjunto de A×B.

Exemplos:

a) S = {(x, y) ∈ A×B |x < y} = {(1, 2); (1, 4); (2, 4); (3, 4)}

b) E = {(x, y) ∈ A×B | y = 3x} = ∅

11
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Gráficos de flechas
a)

1
2
3

A

2
4

B
S

b)

1
2
3

A

2
4

B
E

2.1.2 Domı́nio e Imagem

O conjunto dos elementos de A dos quais sai alguma flecha é o domı́nio de
S: D(S).

O conjunto dos elementos de B nos quais chega alguma flecha de S é a
imagem de S: Im(S).

D(S)

Im(S)

Nos exemplos anteriores:

D(S) = A Im(S) = B

D(S) = ∅ Im(S) = ∅
D(S) ⊂ A e Im(S) ⊂ B
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2.1.3 Relações Inversas

Se S = {(x, y) ∈ A×B |x ∗ y} a relação S−1 = {(x, y) ∈ B × A | y ∗ x}

Nos exemplos dados:

S−1 = {(2, 1); (4, 1); (4, 2); (4, 3)} = {(x, y) ∈ B × A | y < x}

E−1 = ∅ = {(x, y) ∈ B × A |x = 3y}

1
2
3

A

2
4

B
S

2
4

B

1
2
3

AS−1

2.2 Geometria Anaĺıtica Plana

2.2.1 Fórmula da distância entre dois pontos

Sejam P1(x1, y1) e P2(x2, y2) dois pontos do R2

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2

x

y

0

P1

P2

y1

x1

y2

x2

Exemplo: Calcule a distância entre os pontos P1(−4,−3) e P2(2, 7).

|P1P2| =
√

[2− (−4)]2 + [7− (−3)]2 =
√
36 + 100 = 2

√
34
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2.2.2 Equação da reta

É uma equação do 1o grau com duas variáveis.

x

y

L

A(a, 0)

B(0, b)

P (x, y)

Q(x, 0)

y − b

x− 0
α

Seja a reta L que faz ângulo α com o eixo dos x.

m = tg α =
y − b

x
=⇒ y = mx+ b

Equação geral:

Ax+By + C = 0

By = −Ax− C

y = −A

B︸ ︷︷ ︸
m

x −C

A︸ ︷︷ ︸
b

; B ̸= 0

Exemplo: Dê o gráfico da relação {(x, y) ∈ R2 | y = 2x− 3}.
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x

y

0

(2, 1)

(0,−3)

1

2

x y

0 −3
2 1

2.2.3 Equação do ćırculo (circunferência)

Lugar geométrico dos pontos de plano que equidistam de um ponto fixo
denominado de centro.

x

y

0

C(h, k)

(h, 0)

(0, k)

r

P (x, y)

{(x, y) ∈ R2 |
√

(x− h)2 + (y − k)2 = r}

ou
{(x, y) ∈ R2 | (x− h)2 + (y − k)2 = r2}

Exemplo: Construa o gráfico de {(x, y) ∈ R2 |x2 + y2 = 4}
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x

y

0 (2, 0)

(0, 2)

(−2, 0)

(0,−2)

2.3 Exerćıcios

1. Construa o gráfico da relação R = {(x, y) ∈ R2 | 2x− 3y < 6}.

R =
{
(x, y) ∈ R2

∣∣∣ y > 2
3
x− 2

}
Logo, (x1, y1) ∈ R ⇔ P1 está acima do gráfico de y = 2

3
x− 2.

x

y

0 (3, 0)

(0,−2)

2. Construa o gráfico cartesiano das relações:

a) R = {(x, y) ∈ R2 |x2 + y2 < 9 e x+ 2y > 4}
R = R1 ∩R2, onde

R1 = {(x, y) ∈ R2 |x2 + y2 < 9}
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e

R2 = {(x, y) ∈ R2 |x+ 2y > 4} =
{
(x, y) ∈ R2

∣∣∣ y > −1

2
x+ 2

}

x

y

0 (3, 0)

(0, 3)

(−3, 0)

(0,−3)

(0, 2) (4, 0)

b)

{
x2 + y2 = 4 ;
y − x = 1{(
−1−

√
7

2
, 1−

√
7

2

)
;
(

−1+
√
7

2
, 1+

√
7

2

)}

x

y

0

(2, 0)

(0, 2)

(−2, 0)

(0,−2)

(
−1+

√
7

2 , 1+
√
7

2

)

(
−1−

√
7

2 , 1−
√
7

2

)

3. Dados os conjuntos A = {x ∈ R | 1 ≤ x ≤ 4} e B = {2}, construa o
gráfico cartesiano de A×B.

x

y

0

2

1 4

A×B
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4. Dados os conjuntos A = {x ∈ R | 1 ≤ x ≤ 4} e B = {y ∈ R | 2 ≤ y ≤ 4},
construa os gráficos cartesianos de A×B e B × A.

x

y

0

2

4

1 4

A×B

x

y

0

1

4

2 4

B ×A

5. Se A = {1 , 2 , 5 , 8} e B = {0 , 2 , 3}, quais são os elementos da relação
R = {(x, y) ∈ A×B |x < y} ? Construa o gráfico de flechas.

R = {(1, 2); (1, 3); (2, 3)}

1
2
5
8

A

0
2
3

BR

6. Sendo A = {x ∈ R | 1 ≤ x ≤ 3} e B = {y ∈ R | 2 ≤ y ≤ 6}, construa o
gráfico cartesiano da relação R = {(x, y) ∈ A×B | y = 2x}.

x

y

0

2

6

1 3

R

7. Se A = {0 , 1 , 2 , 5} e B = {−2 , −1 , 0 , 1 , 2}, quais os elementos de
R = {(x, y) ∈ A×B | y =

√
x− 1} ?

R = {(1, 0); (2,−1); (2, 1); (5,−2); (5, 2)}
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0
1
2
5

A
−2
−1
0
1
2

B
R

8. Represente num gráfico cartesiano:

a) R2

b) R+ × R+

c) R+ × R−

d) R− × R+

e) [0, 2]× [−1, 1[

f) R× {3}

g) {−2} × [0, 7[

h) Z2

i) Z+× ]−∞, 0]

a) R2

x

y

0

b) R+ × R+

x

y

0

c) R+ × R−

x

y

0

d) R− × R+

x

y

0
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e) [0, 2]× [−1, 1[

x

y

0

1

−1

2

f) R× {3}

x

y

0

3

g) {−2} × [0, 7[

x

y

0

−2

7

h) Z2

x

y

0

1

2

3

4

−1
−2
−3
−4

1 2 3 4−1−2−3−4

i) Z+× ]−∞, 0]

x

y

0

1

2

3

4

−1
−2
−3
−4

1 2 3 4−1−2−3−4
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2.4 Funções

Conceito: Quando uma relação F do A em B é tal que cada elemento possui
uma e somente uma imagem em B, dizemos que F é uma função de A em
B.

a

b
c

A

α
β
γ

BS

S não é função

a

b
c

d

A

α
β
γ

δ

BF

F é função

2.4.1 Notação

Exemplos:

f : Z+ → R; f(x) = 2x

Então

f(1) = 2, f(3) = 6, . . .

Notar:

f = {(x, y) ∈ Z+ × R | y = 2x}

1
2
3
...

Z+

2
4
6
...

Rf

ou
x 2x

fZ+ R
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x

y

0 1 2 3 4

1

2

3

4

Exerćıcio:
Quais das relações abaixo representa funções?

a)

a

b
c

d

A

α
β
γ

δ

BS
b)

a

b
c

d

A

α
β
γ

δ

BR

c)

a

b
c

d

A

α
β
γ

δ

BT
d)

a

b
c

d

A

α
β
γ

δ

BV

OBS: (x, y) ∈ f e (x1, y1) ∈ f =⇒ x ̸= x1 para ser função.

x

y

0

Não é função!
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2.4.2 Domı́nio e Imagem

Mesma interpretação que nas Relações Binárias.

Exemplo:

a) f : R→ R, f(x) = 2x+ 1
Df = R Im(f) = R

b) g : [1, 2]→ R, g(x) = x
Dg = [1, 2] Im(g) = [1, 2]

c) h : R→ R, h(x) = x2

Dh = R Im(h) = [0,∞[

2.4.3 Classificação das Funções

Seja f uma função de A em B.

a) Sobrejetiva se Im(f) = B

Ex.:

{
f : R→ R , f(x) = 2x+ 1
Im(f) = R =⇒ Sobrejetiva{
g : [1, 2]→ R , g(x) = x
Im(g) = [1, 2] =⇒ Não é sobrejetiva

b) Injetiva se e somente se:

∀(x1, x2, . . .) com x1, x2, . . . ∈ A; x1 ̸= x2 =⇒ f(x1) ̸= f(x2)

Ou seja, elementos distintos têm imagens distintas.

Ex.:

f : R→ R , f(x) = 2x+1 É injetiva, pois x1 ̸= x2 =⇒ 2x1+1 ̸= 2x2+2

h : R → R , h(x) = x2 Não é injetiva, pois x1 ̸= x2 ≠⇒ x2
1 ̸= x2

2,
(−1)2 = 12

c) Uma função sobrejetiva e injetiva é chamada bijetiva. Então em todo
elemento de B chega apenas uma flecha de f .

2.4.4 Funções Reais

Quando A e B são subconjuntos de R.
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Função Constante

R

c

{c}

Df = R , Im(f) = {c}

x

y

0

c

Função Idêntica

f(x) = x ou y = x

Df = R , Im(f) = R x

y

0

Função Binômio do 1o Grau

f(x) = ax+ b , a ̸= 0

Df = R , Im(f) = R x

y

0

b

− b
a

Sinal da função binômio do 1o grau

ax+ b = a

(
x+

b

a

)
= a

[
x−

(
−b
a

)]
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Raiz x1 =
−b
a

0

x1

sinal oposto ao de a sinal de a

Exemplos:

1. Estude a variação do sinal de y = 3x− 5.

Raiz x =
5

3

0

5

3

− +

2. Estude a variação do sinal de y = −x+ 4.

Raiz x = 4
4

+ −

3. Resolva 3x+ 4 > 0.{
x ∈ R |x > −4

3

}
− 4

3

− +

4. Resolva x+3
x−2

< 0

x+ 3 = 0 =⇒ x = −3

x− 2 = 0 =⇒ x = 2

Resposta {x ∈ R | − 3 < x < 2}
−3 2

− − + x− 2

− + + x+ 3

+ − + quociente

5. Resolva 1+x
2−x

< 1−x
2+x

.

1 + x

2− x
− 1− x

2 + x
< 0

(1 + x)(2 + x)− (1− x)(2− x)

(2− x)(2 + x)
< 0
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(2 + x+ 2x+ x2)− (2− x− 2x+ x2)

(2− x)(2 + x)
< 0

(2 + 3x+ x2)− (2− 3x+ x2)

(2− x)(2 + x)
< 0

6x

(2− x)(2 + x)
< 0

x

(2− x)(2 + x)
< 0

−2 0 2

− + + + 2 + x

+ + + − 2− x

+ + + − x

+ − + − x
(2−x)(2+x)

Resposta: {x ∈ R | − 2 < x < 0 ou x > 2}.

Função Trinômio do 2o Grau

f(x) = ax2 + bx+ c, a ̸= 0

Df = R

Im(f) =
[
−∆

4a
,∞
[
quando a > 0

Im(f) =
]
−∞,−∆

4a

]
quando a < 0

OBS: Equação
ax2 + bx+ c = 0

Ráızes

x =
−b±

√
b2 − 4ac

2a
∆ = b2 − 4ac

Soma

S =
−b
a

Produto
P =

c

a
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Estudo do sinal de y = ax2 + bx+ c (parábola)

y = a

[
x2 +

b

a
x+

c

a

]

y = a

[
x2 +

b

a
x+

b2

4a2
− b2

4a2
+

c

a

]

y = a

[(
x+

b

2a

)2

− b2 − 4ac

4a2

]

y = a

(
x+

b

2a

)2

− ∆

4a
, ∆ = b2 − 4ac

x −∞ − b
2a

+∞

x+ b
2a

−∞ 0 +∞(
x+ b

2a

)2
+∞ 0 +∞

a > 0, a
(
x+ b

2a

)2
+∞ 0 +∞

a < 0, a
(
x+ b

2a

)2 −∞ 0 −∞

a > 0, y = a
(
x+ b

2a

)2 − ∆
4a

+∞ −∆
4a

+∞

a < 0, y = a
(
x+ b

2a

)2 − ∆
4a

−∞ −∆
4a

−∞

CONCLUSÕES

1) Se a > 0, y decresce até −∆
4a

e a seguir cresce.

Mı́nimo
(
− b

2a
,−∆

4a

)
←− vértice

Im(f) =
[
−∆

4a
,∞
[
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2) Se a < 0 a parábola tem máximo.

Máximo
(
− b

2a
,−∆

4a

)
←− vértice

Im(f) =
]
−∞,−∆

4a

]
Representação gráfica:

∆ > 0 ∆ = 0 ∆ < 0

a > 0 − b
2a

− ∆
4a

x1 x2

x

y

− b
2a x

y

− b
2a

− ∆
4a

x

y

a < 0
− b

2a

− ∆
4a

x1 x2 x

y

− b
2a

x

y
− b

2a

− ∆
4a x

y

Exemplo:
1. Faça o gráfico de y = x2 − 6x+ 8.

x =
6±
√
36− 32

2

x1 = 4
↗
↘

x2 = 2

Mı́nimo:

xm = − b

2a
= −(−6)

2
= 3

ym = −∆

4a
= −4

4
= −1 1 2 3 4 5

−2

2

4

6

8

10

(2,0) (4,0)

(3,-1)

(0,8)

x

y

2. Determine o máximo de −x2 + x+ 1.

yM = −(1 + 4)

−4
= − 5

−4
=

5

4

Função Polinômio Racional Inteiro

Polinômio na variável real x, é toda expressão do tipo:

anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0 , onde:
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• an, an−1, an−2, . . ., a2, a1, a0 são números reais, denominados coefici-
entes;

• n é um número inteiro positivo ou nulo;

• o grau da expressão é definido pelo maior expoente de x cujo coeficiente
não seja nulo.

Função polinomial de grau n, para todo x real, é definida como:

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0

considerando as definições acima.

Domı́nio: Df = R

Imagem: Im(f) depende de n e de an, an−1, an−2, . . ., a2, a1, a0.

Exemplo: f(x) = x3

−3 −2 −1 1 2 3

−40

−20

20

40

x

y

f(x) = xn

n par, o gráfico é do tipo da parábola
↗
↘

n ı́mpar, o gráfico é do tipo x3

Abaixo destacamos algumas propriedades de polinômios de interesse para
o presente texto.

Divisão de polinômios:

Considere dois polinômios p(x) e h(x), com h(x) não nulo. Dividir p(x)
por h(x) significa encontrar dois polinômios q(x) e r(x), que satisfaçam às
seguintes condições:
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• p(x) = h(x) · q(x) + r(x); onde p(x) é o dividendo, h(x) é o divisor,
q(x) é o quociente e r(x) o resto.

• O grau de r(x) não pode ser igual nem superior ao grau de h(x) ou
então r(x) = 0.

Dispositivo prático de Briot-Ruffini

Seja dividir um polinômio p(x) por h(x) = x− c. Como indicado acima,
podemos escrever

p(x) = (x− c) q(x) + r , (∗)

onde

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0 , e

q(x) = bn−1x
n−1 + bn−2x

n−2 + bn−3x
n−3 + . . .+ b2x

2 + b1x+ b0 .

Desenvolvendo o segundo membro da igualdade (∗), fica:

(x− c) q(x) = bn−1x
n + (bn−2 − c bn−1)x

n−1 + (bn−3 − c bn−2)x
n−2 + . . .

+(b1 − c b2)x
2 + (b0 − c b1)x− c b0 + r .

Igualando a expressão acima a p(x), teremos:

anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0 = bn−1x

n + (bn−2 − c bn−1)x
n−1

+(bn−3 − c bn−2)x
n−2 + . . .+ (b1 − c b2)x

2 + (b0 − c b1)x+ r − c b0

Donde se conclui que:
bn−1 = an
bn−2 − c bn−1 = an−1 =⇒ bn−2 = an−1 + c bn−1

bn−3 − c bn−2 = an−2 =⇒ bn−3 = an−2 + c bn−2
...
b0 − c b1 = a1 =⇒ b0 = a1 + c b1
r − c b0 = a0 =⇒ r = a0 + c b0

Exemplo: Use o método de Briot-Ruffini para efetuar a divisão de p(x) =
3x3 − 5x2 + x− 2 por h(x) = x− 2.
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Termo constante do divisor coeficientes de x do dividendo p(x) Termo constante do

com sinal trocado
3 − 5 1

dividendo p(x)

2 −2

coeficientes do quociente resto

3 2× 3− 5 = 1 2× 1 + 1 = 3 2× 3− 2 = 4

Verificamos que q(x) = 3x2 + x+ 3; r(x) = 4.

Teorema de D’Alambert

O teorema de D’Alambert afirma que o resto da divisão de um polinômio
p(x) por (x− c) é p(c).

Demonstração. A divisão de p(x) por x− c, resulta num quociente q(x) e em
um resto r(x). Portanto podemos escrever:

p(x) = (x− c) q(x) + r(x)

Fazendo x = c, vem:

p(c) = (c− c) q(c) + r = 0× q(c) + r =⇒ r = p(c)

Exemplo: Pela divisão sintética (dispositivo de Briot-Ruffini), ache o quoci-
ente e o resto da divisão de −x4 + 7x3 − 4x2 por x− 3.

Solução:

3 −1 7 −4 0 0

−1 3× (−1) + 7 = 4 3× 4− 4 = 8 3× 8 = 24 3× 24 = 72

Quociente: q(x) = −x3 + 4x2 + 8x+ 24;

Resto: r(x) = 72

Teorema do Fator
Se c é uma raiz de um polinômio p(x), de grau n > 0, então x − c é um

fator de p(x).

Demonstração. Pelo teorema de D’Alambert, a divisão de p(x) por x − c
resulta um quociente q(x) e um resto p(c), tal que:

p(x) = (x− c) q(x)+ p(c); se c é uma raiz de p(x), então, p(c) = 0 e teremos:

p(x) = (x− c) q(x)

Portanto, x− c é um fator de p(x).
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Como consequência, podemos afirmar que p(x) é diviśıvel por (x − a) e
por (x− b), com a ̸= b, se, e somente se, p(x) for diviśıvel por (x− a)(x− b).

Equações polinomiais

Denomina-se equação polinomial ou algébrica, toda equação que pode ser
escrita na forma

anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 + a1x+ a0 = 0

Relações de Girard

Seja a equação do segundo grau ax2 + bx+ c = 0, com a ̸= 0.

Sejam x1 e x2, suas ráızes.

Decompondo o primeiro membro em fatores do primeiro grau, fica:

ax2 + bx+ c = a(x− x1)(x− x2) = a
[
x2 − (x1 + x2)x+ x1x2

]
Dividindo o primeiro e o último membros por a, fica:

x2 +
b

a
x+

c

a
= x2 − (x1 + x2)x+ x1x2

Considerando a igualdade entre o polinômio do primeiro membro da igual-
dade e o do segundo, temos:

−(x1 + x2) =
b

a
=⇒ x1 + x2 = −

b

a

x1x2 =
c

a

As relações acima são denominadas, “relações entre coeficientes e ráızes
da equação algébrica do segundo grau”.

Para uma equação algébrica do terceiro grau, por decomposição de fato-
res, tendo com ráızes x1, x2, x3, teremos:

ax3 + bx2 + cx+ d = a(x− x1)(x− x2)(x− x3)

= a
[
x3 − (x1 + x2 + x3)x

2 + (x1x2 + x1x3 + x2x3)x− x1x2x3

]
Dividindo o primeiro e o último termos da equação acima por a, fica:

x3+
b

a
x2+

c

a
x+

d

a
= x3− (x1+x2+x3)x

2+(x1x2+x1x3+x2x3)x−x1x2x3

Considerando a igualdade entre o polinômio do primeiro membro da igual-
dade e o do segundo, temos:

−(x1 + x2 + x3) =
b

a
=⇒ x1 + x2 + x3 = −

b

a
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x1x2 + x1x3 + x2x3 =
c

a

x1x2x3 = −
d

a

Para uma equação algébrica do quarto grau, por decomposição de fatores,
tendo com ráızes x1, x2, x3, x4, teremos:

ax4 + bx3 + cx2 + dx+ e = a(x− x1)(x− x2)(x− x3)(x− x4)

= a
[
x4− (x1+x2+x3+x4)x

3+(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)x
2

+(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)x+ x1x2x3x4

]
Seguindo o procedimento usado nas equações anteriores, teremos:

x1 + x2 + x3 + x4 = −
b

a

x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 =
c

a

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −
d

a

x1x2x3x4 =
e

a

Portanto, generalizando, podemos escrever para a equação algébrica de
grau n, anx

n + an−1x
n−1 + an−2x

n−2 + . . .+ a2x
2 + a1x+ a0 = 0, com ráızes

x1, x2, x3, . . ., xn, as seguintes relações:

• Soma de ráızes:

x1 + x2 + x3 + . . .+ xn = −an−1

an

• Soma dos produtos das ráızes, tomadas duas a duas:

x1x2 + x1x3 + . . .+ xn−1xn =
an−2

an

• Soma dos produtos das ráızes, tomadas três a três:

x1x2x3 + x1x2x4 + . . .+ xn−2xn−1xn = −an−3

an

• Produto de n ráızes:

x1x2x3 · . . . · = (−1)n a0
an

Pesquisa de ráızes racionais de uma equação algébrica de coeficientes inteiros
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Se o número racional p
q
, com p e q primos entre si, é raiz de uma equação

algébrica de coeficientes inteiros anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a2x

2 +
a1x+ a0 = 0, então p é divisor de a0 e q é divisor de an.

Exerćıcios:

1) Dividir 5x5 − 7x3 + 6x2 − 2x+ 4 por x− 1.

Solução:

1 5 0 −7 6 −2 4

5 5 −2 4 2 6

q(x) = 5x4 + 5x3 − 2x2 + 4x+ 2

r(x) = 6

2) Sem executar a divisão, mostrar que x4 + 3x3 + 3x2 + 2 é diviśıvel por
x+ 2

Solução:

f(−2) = 24 − 3× 23 + 3× 22 − 3× 2 + 2 = 16− 24 + 12− 6 + 2 = 0

3) Solicitação semelhante à do item anterior, para f(x) = 2x4 − 7x3 −
2x2 + 13x+ 6, em relação a x2 − 5x+ 6.

Solução:

x2 − 5x+ 6 = 0 → x =
5±
√
25− 24

2
→ x1 = 3 ; x2 = 2

→ x2 − 5x+ 6 = (x− 2)(x− 3)

→ f(2) = 2× 24 − 7× 23 − 2× 22 + 13× 2 + 6 = 0;

f(3) = 2× 34 − 7× 33 − 2× 32 + 13× 3 + 6 = 0

Função Racional

f(x) =
P (x)

Q(x)
, onde P (x) e Q(x) são polinômios racionais.

Df = {x ∈ R |Q(x) ̸= 0}

Exemplo: f(x) =
x3 − 5x2 + 4x− 1

x2 − 5x+ 6

Df =]−∞, 2[ ∪ ]2, 3[ ∪ ]3,+∞[
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Função Módulo

f(x) = |x|
Df = R; Im(f) = R+

|x| =
{

x se x ≥ 0,
−x se x < 0.

−2 −1 1 2

1

2

3 y = |x|

x

y

Operações com Funções

Sejam f : E → R e g : E → R onde E ⊂ R.

I) A soma de f com g.

f + g : E → R, (f + g)(x) = f(x) + g(x)

II) Produto de f por g.

f · g : E → R, (f · g)(x) = f(x) · g(x)

III) Diferença de f e g.

f − g : E → R, (f − g)(x) = f(x)− g(x)

IV) Sendo g(x) ̸= 0 para todo x ∈ E. Quociente de f por g.

f

g
: E → R,

(
f

g

)
(x) =

f(x)

g(x)

V) Se λ ∈ R o produto de λ por f

f : E → R, (λf)(x) = λf(x)
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OBS: Funções iguais: f(x) = g(x), ∀x x ∈ R e Df = Dg

Exemplos:

1) f(x) = +
√
x4 e g(x) = x2 são iguais.

2) f(x) = x− 1 e g(x) = x2−x
x

não são iguais pois Df ̸= Dg.

3) f(x) = x e g(x) = x2

x
Df ̸= Dg.

4) Qual o domı́nio da função real f definida por f(x) = g(x) + h(x) onde
g(x) =

√
x+ 7 e h(x) =

√
1− x?

Dg = {x ∈ R |x+ 7 ≥ 0} −→ x ≥ −7

Dh = {x ∈ R | 1− x ≥ 0} −→ x ≤ 1

Df = Dg ∩Dh

Df = {x ∈ R | − 7 ≤ x ≤ 1}

Composição de Funções

Seja f : A→ B e g : B → C

g ◦ f : A→ C, (g ◦ f)(x) = g[f(x)]

x

A

f(x)

B

g
[
f(x)

]
C

f g

g ◦ f

Exemplo: Sejam f : R→ R, f(x) = 2x− 1

g : R→ R, g(x) = 5− 3x

a) y = f(x), z = g(y) = g
[
f(x)

]

x

R

y

R

z

R
f g

g ◦ f
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g(x) = 5− 3x, g
[
f(x)

]
= 5− 3 · f(x) = 5− 3(2x− 1) = 8− 6x

g ◦ f : R→ R, (g ◦ f)(x) = 8− 6x

b) y = g(x), z = f(y) = f
[
g(x)

]

x

R

y

R

z

R
g f

f ◦ g

f(x) = 2x− 1, f
[
g(x)

]
= 2 · g(x)− 1 = 2(5− 3x)− 1 = 9− 6x

f ◦ g : R→ R, (f ◦ g)(x) = 9− 6x

c) y = f(x), z = f(y) = f
[
f(x)

]

x

R

y

R

z

R
f f

f ◦ f

f(x) = 2x− 1, f
[
f(x)

]
= 2(2x− 1)− 1 = 4x− 3

f ◦ f : R→ R, (f ◦ f)(x) = 4x− 3

OBSERVAÇÕES:

I) Em geral g ◦ f é a função cujo domı́nio

Dg◦f = {x |x ∈ Df e f(x) ∈ Dg}

(g ◦ f)(x) = g
[
f(x)

]
, ∀x, x ∈ Df

Exemplos:

1) f : A→ B e g : A′ → B′
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a

b

c

d

A

1

4

B A′

2

3

5
6

B′

α

β

γ

δ

A′ ∩ Im(f) ̸= ∅ Dg◦f = {a, b, c}
2) Seja f a função real definida por

f(x) =
x+ 1

x− 2

Df = R− {2} Im(f) = R− {1}
Df◦f = R− {2, 5} pois
Df◦f = {x |x ∈ Df e f(x) ∈ Df}
Quais x ∈ Df e tais que f(x) /∈ Df?

Apenas x tal que f(x) = 2

2 =
x+ 1

x− 2
−→ x = 5

R− {2}
5

2

Im(f)

2
Df

Im(f)

II) f ◦ g ̸= g ◦ f

III) Composição é associativa

h ◦ (g ◦ f) = (h ◦ g) ◦ f = h ◦ g ◦ f
(h ◦ g ◦ f)(x) = h{g[f(x)]}

Funções Inversas

O mesmo conceito que nas relações binárias. Contudo sendo f : A→ B nem
sempre f−1 é função de B em A.

Exemplo: f : R→ [0,+∞[ , f(x) = x2
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A relação inversa f−1 = {(x, y) ∈ [0,+∞[×R |x = y2} não é função.

A condição necessária e suficiente para que f admita inversa f−1 é que f
seja uma bijeção.

Exemplo:

1) f : R→ R, f(x) = 3x− 1

f é bijetiva portanto admite inversa.

Determinação de f−1:

f = {(x, y) ∈ R2 | y = 3x− 1}
f−1 = {(x, y) ∈ R2 |x = 3y − 1}
Mas isolando y fica: y = x+1

3

=⇒ f−1 = x+1
3

2) f(x) = |x| não admite inversa pois não é bijetiva.

3) f(x) = 1
x+1

Df = R− {−1} Im(f) = R− {0}
x1, x2 ∈ Df , x1 ̸= x2 ⇒ f(x1) ̸= f(x2) ⇒ injetiva logo admite inversa.

OBS: Como funções reais por convenção são sobrejetivas, basta ver se
são injetivas.

Determinação de f−1:

f =
{
(x, y) ∈ R− {−1} × R− {0}

∣∣∣ y = 1
x+1

}
f−1 =

{
(x, y) ∈ R− {0} × R− {−1}

∣∣∣x = 1
y+1

}
x = 1

y+1
=⇒ xy + x = 1 =⇒ y = 1−x

x

f−1 = 1−x
x

OBS:

a) Df = Im(f−1) = R− {−1} e Im(f) = D(f−1) = R− {0}
b) f(x) = 1

x+1
e f
(
f−1(x)

)
= 1

f−1(x)+1
= 1

1−x
x

+1
= x

1−x+x
= x

f−1
(
f(x)

)
= 1−f(x)

f(x)
=

1− 1
x+1
1

x+1

= x+1−1
1

= x

=⇒ f
(
f−1(x)

)
= f−1

(
f(x)

)
= x
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Função Par e Função Ímpar

Se f(x) = f(−x) PAR

Se f(x) = −f(−x) ÍMPAR

}
∀x ∈ Df

Exemplos:

1) f(x) = |x| é par, pois |x| = | − x|

2) f(x) = x3 é ı́mpar, pois f(x) = x3, f(−x) = −x3

Funções Monótonas

1) Estritamente crescente

Se x1 ∈ Df , x2 ∈ Df e x1 < x2 =⇒ f(x1) < f(x2)

2) Estritamente decrescente

Se x1 ∈ Df , x2 ∈ Df e x1 < x2 =⇒ f(x1) > f(x2)

3) Estritamente monótona se f é estritamente crescente ou estritamente
decrescente.

Exemplos:

1. f(x) = 2x+ 1 é estritamente crescente.

2. g(x) = 1
2
(x+ 1) é estritamente crescente.

3. h : R∗
+ →, h(x) = 1

x
é estritamente decrescente.

4. r : R+ → R, r(x) = x2 é estritamente crescente.

Teorema 2.4.1. Se f é estritamente monótona, então f é injetiva.

Teorema 2.4.2. Seja g a inversa de f .

I) f é estritamente crescente se e só se g é estritamente crescente.

II) f é estritamente decrescente se e só se g é estritamente decrescente.
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Funções Definidas Arbitrariamente

Exemplos:

1) f : ]− 1, 1[ → R tal que f(x) =


−x− 1, x ∈ ]− 1, 0[
−x+ 1, x ∈ ]0, 1[
0, x = 0

x

y

0

1

1

−1

−1

2) f : R→ R tal que f(x) =


1, x < 0
2, 0 ≤ x < 1
3, x ≥ 1

x

y

0

1

2

3

1

3) f : R→ R tal que f(x) =

{
−x, x < 0
x2, x ≥ 0
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−2 −1 1 2

1

2

3

4

5

x

y

2.5 Exerćıcios

1. Faça o gráfico cartesiano das relações abaixo e diga quais são as funções
de R em R.

A = {(x, y) ∈ R2 | y = 2x}

−2 −1 1 2

−2

−1

1

2

FUNÇÃO

x

y

B = {(x, y) ∈ R2 | y2 = x2}

−2 −1 1 2

−2

−1

1

2

NÃO

x

y

C = {(x, y) ∈ R2 | y = x2}

−2 −1 1 2

1

2

3

4 FUNÇÃO

x

y

D = {(x, y) ∈ R2 |x = y2}

−0.5 0.5 1 1.5 2

−1

1

NÃO

x

y
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E = {(x, y) ∈ R2 |x2 + y2 = 1}

x

y

1

1

−1

−1

NÃO

2. Diga se cada um dos esquemas define ou não uma função de A = {1, 2, 3, 4}
em B = {5, 6, 7, 9}.

I)

1
2
3
4

A

5
6
7
9

B

FUNÇÃO

II)

1
2
3
4

A

5
6
7
9

B

FUNÇÃO

III)

1
2
3
4

A

5
6
7
9

B

NÃO

3. Classifique as funções abaixo (injetiva, sobrejetiva e bijetiva).
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f : R→ R, f(x) = x bijetiva

g : R→ R, g(x) = 2x+ 5 bijetiva

h : R→ R+, h(x) = x2 sobrejetiva

j : R+ → [0,+∞[ , j(x) = x2 bijetiva

k : [0,+∞[→ [0,+∞[ , k(x) = x2 bijetiva

m : ]−∞, 0]→ [0,+∞[ , m(x) = x2 bijetiva

p : R→ R+, p(x) = |x| sobrejetiva

q : R− {0} → R− {0}, q(x) = 1
x

bijetiva

4. Seja A = {1, 2, 3, 4}. Sejam f , g e h funções de A em A.

f(1) = 3, f(2) = 5, f(3) = 5, f(4) = 5

g(1) = 1, g(2) = 5, g(3) = 5, g(4) = 1

h(1) = 7, h(2) = 1, h(3) = 5, h(4) = 7

Qual das funções é injetora?

5. Sendo f : [−3, 4]→ B, f(x) = x2, uma função sobrejetora, especifique B.

f(−3) = 9
f(4) = 16

=⇒ B = [9, 16]

6. Classifique em par ou ı́mpar as seguintes funções de R em R:

a) y = 2x

f(−x) = −2x
f(x) = 2x = −f(x) −→ ÍMPAR

b) y = x2 − 4

f(x) = f(−x) −→ PAR

c) y = |x| − 4

f(x) =

{
x− 4, x ≥ 0
−x− 4, x < 0

−→ f(x) = f(−x) PAR
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−6 −4 −2 2 4 6

−6
−4
−2

2

4

6

x

y

d) y = 3 −→ PAR

e) y = x7

f(x) = −f(−x) −→ ÍMPAR

7. Verifique se são pares ou ı́mpares as funções de R em R definidos por:

a) f(x) = x2 PAR

b) f(x) = 5x− 1 Ñ PAR; Ñ ÍMPAR

−4 −2 2 4

−4

−2

2

4

x

y

c) f(x) = x4 − 3x2 + 1 (3 funções pares)

f(x) = f(−x) PAR

d) f(x) = |x| PAR

e) f(x) =
x

x2 − 1
ÍMPAR
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−1 0 +1

x − − + +

x+ 1 − + + +

x− 1 − − − +

x

x2 − 1
− + − +

−∞ +∞ −∞ +∞

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

f) f(x) = |x− 1|

f(x) =

{
x− 1, para x ≥ 1
−x+ 1, x < 1

Ñ PAR, Ñ ÍMPAR

−4 −2 2 4 6

−2

2

4

6

x

y
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g) f(x) = x5 + 4x3 − 2x ÍMPAR (Três funções ı́mpares)

h) f(x) =
x− 1

x+ 1
Ñ PAR, Ñ ÍMPAR

x −1 +1−∞ +∞

x− 1 − − +

x+ 1 − + +

x− 1

x+ 1
+ − +

+∞ −∞1+ 1−

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

8. Seja f uma aplicação de A = {1, 2, 3, 4} em B = {2, 4, 7, 9} definida por
f(1) = 4, f(2) = 2, f(3) = 7 e f(4) = 9. Construa f−1.

1
2
3
4

A

2
4
7
9

B

f−1(2) = 2, f−1(4) = 1,
f−1(7) = 3, f−1(9) = 4

9. Determine o domı́nio convencional das funções reais definidas abaixo por
f(x) igual a:
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a) |x− 3| Df = R

b) x3 − x2

2
+ 1 Df = R

c) 1
x

Df = R− {0} ou R∗

d) x2−3
x2−9

= x2−3
(x+3)(x−3)

Df = R− {−3, 3}

e) x
x2+1

Df = R

f) x
x2−7x+12

x2 − 7x+ 12 ̸= 0

x ̸= 7±
√
49−48
2

x ̸= 7±1
2

4
↗
↘

3

Df = R− {3, 4}

g)
√
2x+ 3

2x+ 3 ≥ 0 Df =
{
x ∈ R |x ≥ −3

2

}
h) 1√

x+1

x+ 1 > 0 Df = {x ∈ R |x > −1}

i)
√
4− x2

4− x2 ≥ 0 Df = {x ∈ R | − 2 ≤ x ≤ 2}

j)
√
x2 − 5x+ 6

x2 − 5x+ 6 ≥ 0

x2 − 5x+ 6 = 0

x = 5±
√
25−24
2

x = 5±1
2

3
↗
↘

2

Df = {x ∈ R |x ≤ 2 ou x ≥ 3}

k) 1√
x2+x+1

x2 + x+ 1 ≥ 0

∆ < 0

Df = R
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2.6 Função Exponencial e Logaritmo

2.6.1 Preliminares

Propriedades da potenciação

am · an = am+n

am ÷ an = am−n sendo a ̸= 0

(a · b)n = an · bn

(a
b

)n
=

an

bn
sendo b ̸= 0

(am)n = am·n

Radicais

n
√
a = b ⇔ bn = a

Quando a ∈ R− e n é par, não existe raiz em R.

Quando a ∈ R− e n é ı́mpar, a raiz é um número negativo.

n
√
am = a

m
n sendo a > 0

Propriedades: sendo a ≥ 0 e b ≥ 0, temos:

n
√
an = a

√
a · b =

√
a ·
√
b√

a

b
=

√
a√
b
sendo b ̸= 0

n
√
am = n·p

√
am·p sendo p ̸= 0

n
√
am = n÷p

√
am÷p sendo p ̸= 0
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2.6.2 Função exponencial

Toda função do tipo f(x) = ax definida para todo x real com a > 0 e a ̸= 1.

Gráfico:

a > 1

y = 2x

−1 −0.5 0.5 1 1.5 2

1

2

3

4

x

y

0 < a < 1

y =

(
1

2

)x

−2 −1.5 −1 −0.5 0.5 1

1

2

3

4

x

y

OBS: A curva passa por (0, 1).

Df = R ; Im(f) = R∗
+

a > 1 =⇒ Função crescente

0 < a < 1 =⇒ Função decrescente

Equações exponenciais:

Quando apresenta incógnita no expoente.

1) 2x = 8 =⇒ 2x = 23 =⇒ x = 3

2) 3x+1 + 3x+2 = 12 =⇒ 3 · 3x + 9 · 3x = 12 =⇒ 3x(3 + 9) = 12

=⇒ 3x = 1 =⇒ x = 0
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3) 4x − 3 · 2x + 2 = 0

Fazer 2x = y

y2 − 3y + 2 = 0 =⇒ y =

2 2x = 2 =⇒ x = 1
↗
↘

1 2x = 1 =⇒ x = 0

Inequações exponenciais:

São inequações que envolva funções exponenciais.

a > 1

2x > 8 =⇒ 2x > 23 =⇒ x > 3

0 < a < 1(
1

2

)x

>

(
1

2

)4

=⇒ x < 4

Exerćıcios:

1) Resolva as equações exponenciais:

a) 7x−1 + 7x+1 = 50

7x

7
+ 7 · 7x = 50

7x
(
1

7
+ 7

)
= 50

7x
(
50

7

)
= 50

7x = 7

x = 1

b) 2x+3 = 2x−2 + 62

8 · 2x − 2x

4
= 62

2x
(
8− 1

4

)
= 62
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2x
(
31

4

)
= 62

2x = 8

x = 3

c) 4x + 16 = 17 · 2x

2x = y

y2 + 16 = 17y

y2 − 17y + 16 = 0

y =
17±

√
225

2

y =

16 2x = 16 =⇒ x = 4
↗

ou
↘

1 2x = 1 =⇒ x = 0

d) 49x − 7 · 7x = 0

7x = y

y2 − 7y = 0

y(y − 7) = 0

y = 0 ou y = 7

7x = 0 7x = 7

���XXXx = x = 1

2) Resolva as inequações exponenciais:

a) 49x+1 ≤ 343

49 · 49x ≤ 343

49x ≤ 7

72x ≤ 7

2x ≤ 1

x ≤ 1

2
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b)

(
1

5

)x+3

<
1

25(
1

5

)3

·
(
1

5

)x

<
1

25(
1

5

)x

<
1

25

25 · 5
1(

1

5

)x

< 5

5−x < 5

−x < 1

x > −1

2.6.3 Logaritmos

Consideremos dois nos reais a e b com a ̸= 1. Se ac = b então

c = loga b

loga b = c ⇔ ac = b

sendo

{
0 < a ̸= 1
b > 0

condição de existência do logaritmo.

Propriedades operatórias dos logaritmos:

1) loga(b · c) = loga b+ loga c

2) loga

(
b

c

)
= loga b− loga c

3) loga b
n = n · loga b

Mudança de base:

loga b =
logc b

logc a

ay = b

logc(a
y) = logc b
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y logc a = logc b

Exemplo:

1) Sendo y = log3 10, mudar para a base 10.

y =
log10 10

log10 3
=

1

log10 3

2) Escrever na base 10 log100 3.

log100 3 =
log10 3

log10 100
=

log10 3

2 log10 10
=

log10 3

2

Equações logaŕıtmicas:

1) log5
(
log2 x

)
= 0

log2 x = 50

log2 x = 1

x = 21

x = 2

2) logx(x+ 6) = 2

x2 = x+ 6

x2 − x− 6 = 0

x =
1±
√
1 + 24

2

x =

3
↗
↘
−2

Solução = {3}

3) log3(x+ 7) + log3(x− 1) = 2

log3(x+ 7)(x− 1) = 2

(x+ 7)(x− 1) = 9

x2 − x+ 7x− 7− 9 = 0

x2 + 6x− 16 = 0
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x =
−6±

√
36 + 64

2

��HH−8
↗
↘

2

Solução = {2}

4) log4 x+ log2 x = 6

Passar para base 2: log4 x =
log2 x

log2 4
=

log2 x

2

log2 x

2
+ log2 x = 6 log2 x = n

n

2
+ n = 6

n+ 2n

2
= 6

n = 4

log2 x = 4

x = 24 = 16 Solução = {16}

Exerćıcio:

1) Determine o conjunto solução das equações:

a) log3 x+ log9 x = 3 log9 x =
log3 x

log3 9
=

log3 x

2

log3 x+
log3 x

2
= 3 log3 x = n

2n+ n

2
= 3

3n = 6

log3 x = 2

x = 9

b) log5 x+ log25 x = 6

log5 x+
log5 x

2
= 6

2n+ n

2
= 6

3n = 12
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n = 4

log5 x = 4

x = 54 = 625

c) log2 x− log16 x = 3 log16 x =
log2 x

log2 16
=

log2 x

4

log2 x−
log2 x

4
= 3

4n− n

4
= 3

3n = 12

n = 4

log2 x = 4

x = 24 = 16 Solução = {16}

d) log2(x+ 1) + log4(x+ 1) =
9

2

log2(x+ 1) +
log2(x+ 1)

2
=

9

2

log2(x+ 1) = n

2n+ n

2
=

9

2
3n = 9 =⇒ n = 3

log2(x+ 1) = 3

x+ 1 = 23

x = 7 Solução = {7}

Curva da função logaŕıtmica:

y = log x

−1 1 2 3 4

+∞

−∞

x

log x
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O número e (Base dos logaritmos neperianos):

Exemplo: Juros compostos.

R$ 100,00 rendendo 10% ao ano.

Fim do 1o ano 100 + 10 = 110
Fim do 2o ano 110 + 11 = 121
Fim do 3o ano 121 + 12,1 = 133,1

...
...

Fim do 10o ano = 259,37

Generalizando:

Fim do 1o ano C +
C

n
ou C

(
1 +

1

n

)
Fim do 2o ano

(
C +

C

n

)
+

1

n

(
C +

C

n

)
= C

(
1 +

1

n

)2

...
...

Fim do 10o ano = C

(
1 +

1

n

)n

Se fazemos n→∞ ou seja subdivisões cont́ınuas, temos um limite.

e = lim

(
1 +

1

n

)n

n→∞

= 2,718281 . . .

Logaritmos Neperianos

É o valor da área compreendida entre a curva, o eixo dos x, a ordenada cuja
abscissa é x é a ordenada de abscissa 1.
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log x

y =
1

x

1 x
x

y

=⇒ log 1 = 0

log x = Área ABCD

1

k

x
kx

y =
1

x

A A′ C C ′

B

B′

D D′

x

y

Dividindo AC em n partes iguais e A’C’ em n partes iguais.
Cada divisão de A’C’ é k vezes maior do que as divisões de AC.
Cada altura do elemento A’C’ é k vezes menor do que a de AC =⇒ as

áreas são iguais.
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área ABCD = área A’B’C’D’

=⇒ área ABA’B’ = área CDC’D’

=⇒ área total ABC’D’ = área ABCD + área CDC’D’

= área ABCD + área ABA’B’

=⇒ log kx = log x+ log k

Assim podem ser deduzidas todas as propriedades dos logaritmos . . .

log
a

b
= log a− log b

log(a)n = n · log a

log n
√
a = log a

1
n =

1

n
log a

À esquerda de 1 as áreas são consideradas negativas . . .

OBS:

1) log x = 2,30259 log10 x ≈ 2,3 log10 x

2) A expressão ax pode sempre ser posta sob a forma ebx.

a > 1

y = ax

log y = log ax = x log a

log a = b =⇒ log y = x · b =⇒ y = ebx

a < 1

log a = −b

log y = −b · x =⇒ y = e−bx
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2.7 Coordenadas Polares

Um ponto no plano em coordenadas cartesianas é representado pelo par
ordenado (x, y) onde x, a abscissa, corresponde à projeção do ponto no eixo
Ox e y, a ordenada, corresponde à projeção do ponto o eixo Oy.

No sistema de coordenadas polares, um ponto no plano é representado
pelo par (r, θ), sendo r a distância entre o ponto e um outro ponto fixo,
denominado origem do sistema (ou pólo) e o ângulo θ medido no sentido
anti-horário, entre a semirreta partindo do pólo e contendo o ponto, e um
eixo de referência que contém o pólo (eixo polar).

Estas formas de representação de um ponto no plano, estão mostradas
nas figuras abaixo:

x

y

0

y

x

P (x, y)

θ
x

y

P (r, θ)

0

θ

r

(pólo) (Ox: eixo polar)

OBS.: (r, θ) = (r, θ + 2π)

Exemplo: (r, θ) = (r, 0 + 2π . . .)

Mudança de coordenadas:

a) Polares para cartesianas

x

y

0

y

x

P (x, y)

θ

r
x = r cos θ

y = r sen θ

b) Cartesianas para polares

x2 + y2 = r2 cos2 θ + r2 sen 2θ

x2 + y2 = r2
(
cos2 θ + sen 2θ︸ ︷︷ ︸

1

)
= r2 ⇒ r =

√
x2 + y2

OBS.: Se r = 0 ⇒ podemos tomar θ qualquer.

Se r ̸= 0 ⇒ cos θ =
x

r
; sen θ =

y

r

Exemplos:
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1) Circunferência centrada na origem, de raio 5:

Equação polar:

Como x = r cos θ e y = r sen θ ⇒ r2 = 25

⇒ r = 5

2) Transformação de coordenadas cartesianas para polares. Seja o ponto
P (1, 1).

x

y

0

1

1

P (1, 1)

θ

(1, 1) −→

r =
√
1 + 1 =

√
2; tg θ = 1 ⇒ θ =

π

8
+ 2kπ

r =
√
2

θ =
π

8

 P (r, θ) = P
(√

2,
π

8

)

OBS.: P (x, y) = P (1, 1) coordenadas cartesianas

⇒ P
(√

2,
π

8

)
coordenadas polares

3) Transformar as coordenadas cartesianas para polares de P (−1, 1).
Solução:

r2 = (−1)2 + 12 ⇒ r =
√
2

cos θ = − 1√
2
= −
√
2

2
; sen θ =

1√
2
=

√
2

2

⇒ θ =
3π

4

Então o ponto P terá como coordenadas polares

(√
2,

3π

4

)
.

4) Encontrar as coordenadas cartesianas do ponto P
(
−2, π

6

)
Solução:

x = −2 cos
(π
6

)
y = −2 sen

(π
6

) ⇒ x = −1 ; y = −
√
3 ⇒ P (−1,−

√
3)
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Equação da circunferência em coordenadas polares:

x

y

0

r0

θ0

y0

x0

r

P (x, y)

θ

y

x

x− x0

y − y0

R

C(x0, y0) Centro C: (x0, y0)

Raio: R

Equação: (x− x0)
2 + (y − y0)

2 = R2

Centro da circunferência:

x0 = r0 cos θ0

y0 = r0 sen θ0

Ponto da circunferência:

x = r cos θ

y = r sen θ

⇒ (r cos θ − r0 cos θ0)
2 + (r sen θ − r0 sen θ0)

2 = R2

r2 cos2 θ − 2r0 cos θ0 · r cos θ + r20 cos
2 θ0 + r2 sen2θ − 2r0 sen θ0 · r sen θ + r20 sen

2θ0

= R2

r2(cos2 θ + sen2θ) + r20(cos
2 θ0 + sen2θ0)− 2r0 cos θ0 · r cos θ − 2r0 sen θ0 · r sen θ

= R2

Considerando que:

r2(cos2 θ + sen2θ) = r2 e r20(cos
2 θ0 + sen2θ0) = r20

temos:

r2−2r0 cos θ0︸ ︷︷ ︸
a

·r cos θ−2r0 sen θ0︸ ︷︷ ︸
b

·r sen θ + r20 −R2︸ ︷︷ ︸
c

= 0

Equação da circunferência:

r2 + a r cos θ + b r sen θ + c = 0

onde:

a = −2r0 cos θ0
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b = −2r0 sen θ0
c = r20 −R2

Exemplo: Represente graficamente a circunferência dada pela expressão abaixo:

r2 −
√
3r cos θ − r sen θ − 8 = 0

∗ a = −2r0 cos θ0 = −
√
3

b = −2r0 sen θ0 = −1

c = r20 −R2 = −8

∗ ⇒ −
√
3 = −�2r0 ×

√
3

�2

r0 = 1

sen θ0
cos θ0

= tg θ0 =
1√
3
=

√
3

3

tg θ0 =

√
3

3
⇒ θ0 =

θ

6

⇒ sen θ0 =
1

2
; cos θ0 =

√
3

2

r20 −R2 = −8
12 −R2 = −8
−R2 = −9
R = 3 x

y

0

π/63

3

Casos Particulares

1) Circunferência centrada na origem com raio R
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x

y

0

R
y

x

x2 + y2 = R2 (coordenadas cartesianas)

r2 cos2 θ + r2 sen2θ = R2

r2(cos2 θ + sen2θ) = R2

r2 = R2 ⇒ r = R coordenadas polares

A partir da equação geral

r2 + a r0 cos θ + b r0 sen θ + c = 0

a = −2r0 cos θ0
b = −2r0 sen θ0
c = r20 −R2

 com r0 = c ⇒ r2 = R2 ⇒ r = R

2) Circunferência de raio R centrada num ponto pertencente a Ox e tan-
gente a Oy. Tangente à direita do eixo:

x

y

0 R 2R

(x−R)2 + y2 = R2

x2 − 2Rx+��R2 + y2 = ��R2

x2 + y2 − 2Rx = 0

⇒ r2 cos2 θ − 2Rr cos θ + r2 sen2θ = 0

r2(cos2 θ + sen2θ︸ ︷︷ ︸
1

)− 2Rr cos θ = 0

r2 − 2Rr cos θ = 0 ⇒ r�2 = 2R�r cos θ

r = 2R cos θ

A partir da equação geral:

∗ r2 − 2r0 cos θ0 · r cos θ − 2r0 sen θ0 · r sen θ + r20 −R2 = 0

a = −2r0 cos θ0
b = −2r0 sen θ0
c = r20 −R2

;
com x0 = R ; θ0 = 0

⇒ r0 = R

⇒ a = −2r0 = −2R ⇒ r0 = R

∗ r2 − 2Rr cos θ = 0

⇒ r�2 = 2R�r cos θ ⇒ r = 2R cos θ
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OBS.: Tangente ao eixo Oy, à esquerda:

r = −2R cos θ

Exemplo:

x

y

0 5 10
r = 10 cos θ (tangente à direita)

x

y

0−5−10
r = −10 cos θ (tangente à esquerda)

3) Tangente ao eixo Ox.

Acima do eixo

x2 + (y −R)2 = R2

x = r cos θ; y = r sen θ

x0 = 0; y0 = R
x

y

0

R

r2 cos2 θ + (r sen θ −R)2 = R2

r2 cos2 θ + r2 sen2θ − 2Rr sen θ +��R2 = ��R2

r2(cos2 θ + sen2θ︸ ︷︷ ︸
1

)− 2Rr sen θ = 0

r2 − 2Rr sen θ = 0

r�2 = 2R�r sen θ

r = 2R sen θ

Exemplo: r = 10 sen θ (tangente a Ox por cima)
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x

y

0

5

10

−5 5

Exemplo: r = −10 sen θ (tangente a Ox por baixo)

x2 + (y +R)2 = R2

x

y

0

−5

−10

−5 5

Como caso particular da equação geral, temos:

r2 + a r0 cos θ + b r0 sen θ + c = 0

a = −2r0 cos θ0
b = −2r0 sen θ0
c = r2 −R2

Neste caso particular, temos:

r0 = R

θ0 =
π

2
⇒ a = 0 e b = −2r0 = −2R

c = 0

⇒ r2 − 2Rr sen θ = 0

r�2 = 2R�r sen θ

r = 2R sen θ

Espirais em coordenadas polares

a) Espiral de Arquimedes
r = a+ bθ

Exemplo: r =
θ

5
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b) Espiral hiperbólica (é a inversa da espiral de Arquimedes)

rθ = a

Exemplo: r =
2

θ

c) Espiral logaritmica

r = abθ ; a > 0 || coordenadas polares: r = aeθ cotg b

Exemplo: r = 2θ/10
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d) Espiral parabólica

r = a
√
θ

Exemplo: r = 2
√
θ

2.8 Funções Trigonométricas

2.8.1 Função Seno

Seja a circunferência com raio = 1
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x

y

0 A

B

A′

B′

M1

M

sen (AM) = OM1

0

1

−1

π
2

π 3π
2

2π

y = sen (x)

x

y

Propriedades da função seno:

1) Domı́nio R.

2) Imagem {y ∈ R | − 1 ≤ y ≤ 1}.

3) (+) no Io e IIo quadrantes.

(−) no IIIo e IVo quadrantes.

4) Crescente no Io e IVo quadrantes.

Decrescente no IIo e IIIo quadrantes.

5) Função tem peŕıodo 2π.

6) Função ı́mpar.

2.8.2 Função Cosseno

x

y

0 A

B

A′

B′

M2

M

cos(AM) = OM2

0

1

−1

π
2

π 3π
2

2π

y = cos(x)

x

y

Propriedades da função cosseno:

1) Domı́nio R.

2) Imagem {y ∈ R | − 1 ≤ y ≤ 1}.
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3) (+) no Io e IVo quadrantes.

(−) no IIo e IIIo quadrantes.

4) Crescente no IIIo e IVo quadrantes.

Decrescente no Io e IIo quadrantes.

5) Função tem peŕıodo 2π.

6) Função par.

2.8.3 Função Tangente

x

y

0 A

B

A′

B′

c

T
M

tg (AM) = AT

0 π
2

π 3π
2

2π x

y

y = tg (x)

Os arcos onde OM//c a função não é definida:

x =
π

2
+ kπ , k ∈ Z

Propriedades da função tangente:

1) Domı́nio
{
x ∈ R

∣∣∣x ̸= π

2
+ kπ

}
.

2) Imagem R.

3) (+) no Io e IIIo quadrantes.

(−) no IIo e IVo quadrantes.

4) Crescente em todos os quadrantes.

5) Função tem peŕıodo π.

6) Função ı́mpar.

7) lim
x→π

2
−
tg x = +∞, lim

x→π
2
+
tg x = −∞, lim

x→ 3π
2

−
tg x = +∞, lim

x→ 3π
2

+
tg x =

−∞
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2.8.4 Função Cotangente

x

y

0 A

B

A′

B′

dD

M

cotg (AM) = BD

0 π
2

π 3π
2

2π x

y y = cotg (x)

2.8.5 Função Secante

x

y

0 A

B

A′

B′

S

M

sec(AM) = OS

0

1

−1

π
2

π 3π
2

2π x

y y = sec(x)

Propriedades da função secante:

1) Domı́nio
{
x ∈ R

∣∣∣x ̸= π

2
+ kπ

}
.

2) Imagem {y ∈ R | y ≤ −1 ou y ≥ 1}.

3) Função par.
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2.8.6 Função Cossecante

x

y

0 A

B

A′

B′

C

M

cossec (AM) = OC

0

1

−1

π
2

π 3π
2

2π x

y y = cossec (x)

Propriedades da função cossecante:

1) Domı́nio {x ∈ R |x ̸= kπ}.

2) Imagem {y ∈ R | y ≤ −1 ou y ≥ 1}.

3) Função tem peŕıodo 2π.

2.8.7 Resumo dos sinais e variações das funções trigo-
nométricas nos diversos quadrantes:

Quadrante senx cosx tg x cotg x secx cossecx

I
+ + + + + +

0 até 1 1 até 0 0 até ∞ ∞ até 0 1 até ∞ ∞ até 1

II
+ − − − − +

1 até 0 0 até −1 −∞ até 0 0 até −∞ −∞ até −1 1 até ∞

III
− − + + − −

0 até −1 −1 até 0 0 até ∞ ∞ até 0 −1 até −∞ −∞ até −1

IV
− + − − + −

−1 até 0 0 até 1 −∞ até 0 0 até −∞ ∞ até 1 −1 até −∞

2.8.8 Relações entre as funções trigonométricas

• senx =
1

cossecx
; cosx =

1

secx
; tg x =

1

cotg x

• tg x =
senx

cosx
; cotg x =

cosx

senx

• sen2 x+ cos2 x = 1; 1 + tg2 x = sec2 x; 1 + cotg2 x = cossec2 x

• senx = cos
(π
2
− x
)
; cos x = sen

(π
2
− x
)
; tg x = cotg

(π
2
− x
)
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• sen (π − x) = senx; cos(π − x) = − cosx; tg (π − x) = − tg x

Fórmulas da adição

• sen (x± y) = senx cos y ± cosx sen y

• cos(x± y) = cos x cos y ∓ senx sen y

• tg (x± y) =
tg x± tg y

1∓ tg x tg y

• cotg (x± y) =
cotg x cotg y ∓ 1

cotg x± cotg y

Fórmulas de ângulos duplos

• sen 2x = 2 sen x cosx; cos 2x = cos2 x− sen2 x; tg 2x =
2 tg x

1− tg2 x

• senx = 2 sen
x

2
cos

x

2
; cosx = cos2

x

2
− sen2 x

2
; tg x =

2 tg 1
2
x

1− tg2 1
2
x

• cos2 x = 1
2
+ 1

2
cos 2x; sen2 x = 1

2
− 1

2
cos 2x

• 1 + cos x = 2 cos2
x

2
; 1− cosx = 2 sen2 x

2

• sen
x

2
= ±

√
1− cosx

2
; cos

x

2
= ±

√
1 + cos x

2
;

tg
x

2
= ±

√
1− cosx

1 + cos x

Soma, diferença e produto de funções trigonométricas

• senx+ sen y = 2 sen 1
2
(x+ y) cos 1

2
(x− y)

• senx− sen y = 2 cos 1
2
(x+ y) sen 1

2
(x− y)

• cosx+ cos y = 2 cos 1
2
(x+ y) cos 1

2
(x− y)

• cosx− cos y = 2 sen 1
2
(x+ y) sen 1

2
(y − x)

• senx sen y = 1
2
{cos(x− y)− cos(x+ y)}

• cosx cos y = 1
2
{cos(x− y) + cos(x+ y)}

• senx cos y = 1
2
{ sen (x− y) + sen (x+ y)}
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Valores das funções trigonométricas para “ângulos notáveis”

30o 45o 60o

seno
1

2

√
2

2

√
3

2

cosseno

√
3

2

√
2

2

1

2

tangente

√
3

3
1

√
3

2.9 Funções Trigonométricas Inversas

2.9.1 Função arco seno:

Inversa −→
y = sen x
x = sen y
⇒ y = arcsen x

x varia de −1 a 1 e y de −π

2
a +

π

2

0 1−1

π
2

−π
2

x

y
y = arcsenx

2.9.2 Função arco cosseno:

Inversa −→
y = cosx
x = cos y
⇒ y = arccosx

x varia de −1 a 1 e y de 0 a π
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0 1−1

π

π
2

x

y
y = arccosx

2.9.3 Função arco tangente:

Inversa −→
y = tg x
x = tg y
⇒ y = arctg x

x varia de −∞ a +∞ e y de −π

2
a +

π

2

0

π
2

−π
2

x

y
y = arctg x

2.9.4 Função arco cotangente:

0

π

π
2

x

y
y = arccotx
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2.9.5 Função arco secante:

0 1−1

π

π
2

x

y
y = arccosx

2.9.6 Função arco cossecante:

0 1−1

π
2

−π
2

x

y
y = arccscx

2.10 Translação, Reflexões e Expansões de Funções

Translação do gráfico de uma função y = f(x) (com c > 0):

a) y = f(x)+ c; translada o gráfico de y = f(x), de c unidades para cima.

b) y = f(x)−c; translada o gráfico de y = f(x), de c unidades para baixo.

c) y = f(x− c); translada o gráfico da função original, de c unidades para
a direita.

d) y = f(x+ c); translada o gráfico da função original, de c unidades para
a esquerda.

Reflexões e expansões do gráfico de uma função y = f(x) (com c > 1):

a) y = c · f(x); expande o gráfico de y = f(x) verticalmente por um fator
de c.
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b) y = 1
c
· f(x); comprime o gráfico de y = f(x) verticalmente por um

fator de c.

c) y = f(c · x); comprime o gráfico de y = f(x) horizontalmente por um
fator de c.

d) y = f(x/c); expande o o gráfico de y = f(x) horizontalmente por um
fator de c.

e) y = −f(x); reflete o gráfico de y = f(x) em torno do eixo x.

f) y = f(−x); reflete o gráfico de y = f(x) em torno do eixo y.

2.11 Funções Transcendentais

As funções transcendentais são as funções não algébricas, que incluem as
funções trigonométricas, trigonométricas inversas, exponenciais, logaŕıtmicas,
e outras funções que não são classificadas como as anteriores, como por exem-
plo, exp(x), tg (x), ln(x), Γ(x). A composição de funções transcendentais
pode gerar uma função algébrica.

Exemplo: f(x) = sen (cos−1 x) =
√

(1− x2)

2.12 Aplicações

2.12.1 Centrifugação

No processo de centrifugação, separamos materiais pela sua massa. A taxa
de sedimentação depende do campo centŕıfugo aplicado, da densidade e do
raio da part́ıcula, e da densidade e viscosidade do meio. Para efeitos práticos,
utilizamos o cálculo da “força centŕıfuga relativa” (RCF) que informa quantas
vezes o campo centŕıfugo é maior do que o campo gravitacional g. Da F́ısica,
podemos escrever

��mω2r︸ ︷︷ ︸
Força centŕıfuga

(considerado r perpendicular
ao eixo de rotação)

= ��mg × RCF︸ ︷︷ ︸
Força equivalente,
em múltiplos de g
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onde: ω: velocidade angular

(
∆θ

∆t

)
r: distância entre a part́ıcula e o eixo de rotação

g: aceleração da gravidade

A relação entre a velocidade angular ω e o mı́nimo de rotações por minuto
(rpm) pode ser escrita como:

ω =
2π × rpm

60
,

onde o valor 60 no denominador é devido à passagem de segundos para
minutos.

O campo centŕıfugo gerado pela rotação nas part́ıculas à distância r do
eixo, vale:

ω2r =

(
2π × rpm

60

)2

× r =
4π2(rpm)2

3600
× r

A razão entre este valor e o campo g, é:

RCF =
ω2r

g
=

4π2(rpm)2

3600× 980
× r = 1,11× 10−5 × (rpm)2 × r

onde o valor 980 no denominador corresponde à aceleração da gravidade, g,
em cm/s2, e não m/s2.

Exemplo: Um rotor com raio médio 5 cm, girando a uma velocidade angular
10.000 rpm, cria um campo centŕıfugo de...

Solução: RCF = 1,11× 10−5 × 108 × 5 = 1110× 5 = 5550g

2.12.2 Espessura de filme ultrafinos por interferência
de luz

Filmes finos transparentes, estão presentes em muitas situações experimen-
tais, como, camada de óleo sobre água, ou sobre uma superf́ıcie de vidro, su-
perf́ıcies de bolhas de sabã, ou cortes ultrafinos de resina epoxi contendo ma-
terial biológico obtidos por ultramicrotomia, boiando na superf́ıcie da água na
“banheirinha” do ultramicrótono. A determinação da espessura deste corte
é fundamental para a sua posterior análise por microscopia eletrônica de
transmissão pois, como se sabe, os elétrons penetram fracamente na matéria,
limitando as espessuras observáveis, a valores que usualmente não ultrapas-
sam 100 nm (1 nm = 10−9 m).
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As espessuras de filmes finos podem ser estimadas pelas cores de inter-
ferência causadas pelos raios refletidos nas interfaces do filme com o meio
adjacente.

Seja a situação das bolhas de sabão, considerando a figura abaixo onde a
incidência da luz é aproximadamente perpendicular à interface com o ar e a
espessura do filme diminuta.

ar

filme

ar

raio1

d d

raio2

nfilme > nar

nfilme: ı́ndice de refração do filme.

nar: ı́ndice de refração do ar.

Reflexão na interface ar/filme causa
inversão de fase na onda de luz.

Reflexão na interface filme/ar não
causa inversão de fase.

Para o caso de interferência destrutiva: Diferença de caminho entre os
raios 1○ e 2○ (consideradas as aproximações feitas):

2d = mλfilme ; com m = 1, 2, 3 ,

onde λar = comprimento de onda da luz no ar, λfilme = comprimento de onda
da luz no filme.

A óptica nos ensina que: λfilme =
λar

nfilme

⇒ 2d = mλfilme = m
λar

nfilme

Para o caso de haver interferência construtiva, devemos ter:

2d = (2m− 1)
1

2
λfilme; m = 1, 2, 3, . . .

⇒ 2d = (2m − 1)
1

2

(
λar

nfilme

)
, ou seja, um número ı́mpar de meios compri-

mentos de onda.

Exemplo: Imagine um feixe de luz na faixa do viśıvel (400–700 nm) incidindo
perpendicularmente à superf́ıcie de uma bolha de sabão (considere nbolha =
1,34), cuja espessura do filme de sabão foi obtida previamente e vale 300
nm. Quais os comprimentos de onda na faixa do viśıvel que apresentariam
interferência construtiva neste caso?
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Solução:

2d =

no ı́mpar︷ ︸︸ ︷
(2m− 1)

meios comprimentos

de onda dentro

do filme︷ ︸︸ ︷
1

2

λar

nfilme

⇒ 600 = (2m− 1)
1

2
× λar

1,34

1608 = (2m− 1)λar

m = 1 ⇒ 1608 (infravermelho, não viśıvel)

m = 2 ⇒ 536 (verde, viśıvel)

m = 3 ⇒ 321 (ultravioleta, não viśıvel)

Exerćıcio: Considere um corte ultrafino de resina epoxi transparente, cujo
ı́ndice de refração é n = 1,5, boiando sobre a água no ultramicrótomo e com
luz incidente aproximadamente perpendicular à superf́ıcie do corte. Quais
os comprimentos de onda que apresentam interferência construtiva para as
componentes de luz refletidas na faixa do viśıvel (400 nm a 700 nm) se a
espessura do filme for de 100 nm?

Solução: Expressão para interferência construtiva:

2d = (2m− 1)
1

2
× λar

nfilme

2× 100 = (2m− 1)
1

2
× λar

1,5

(2m− 1)λar = 2× 100× 2× 1,5 nm

(2m− 1)λar = 600 nm

m = 1 ⇒ λar = 600 nm , viśıvel

m = 2 ⇒ λar = 200 nm, ultravioleta

Expressão para a interferência destrutiva:

2d = m
λar

nfilme

⇒ 200 = m
λar

1,5

mλar = 300

m = 1 ⇒ 300 nm

OBS: Com a combinação dos comprimentos de onda para interferência cons-
trutiva e destrutiva é posśıvel construir uma tabela de cores para as espes-
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suras.
As cores da interferência para cortes ultrafinos de resina epoxi boiando so-

bre a água no ultramicrótono, dependem da combinação entre interferências
construtivas e destrutivas.

Para cortes de 100 nm, por exemplo (espessura óptica de 100 × n =
150 nm, pois n = 1,5 para resina epoxi), há interferência destrutiva para
comprimentos de onda de 300 nm, ou seja, próximo ao azul. Há também
interferência construtiva na região de 600 nm, próximo ao vermelho.

O resultado é um deslocamento para a faixa espectral no sentido de com-
primentos de onda maiores com predominância do amarelo e vermelho, dando
a sensação de dourado.

Na tabela abaixo vemos a correspondência entre as cores.

cinza escuro < 40 nm
cinza 40–50 nm
prateados 50–70 nm
dourados 70–90 nm
púrpura > 90 nm

Exerćıcio: Encontre uma expressão para a diferença de caminho óptico entre
os raios luminosos refletidos nas superf́ıcies de bolhas de sabão, considerando
um ângulo de incidência i em relação à normal à superf́ıcie externa da bolha.

Solução:

ar

na

filme

nf

ar

na

i

1
i

r

r
r

d = nf
t

cos r

2

2d sen r

i π
2 − i

δ1
triângulo hachurado

OBS: Reflexão na interface ar/filme
causa inversão de fase na onda lumi-
nosa. Reflexão na interface filme/ar
não causa inversão na fase.

na: ı́ndice de refração do ar.

nf : ı́ndice de refração do filme.

i: ângulo de incidência

r: ângulo de refração

t: espessura do filme

2d: caminho da luz no interior do
filme

Lei de Snell:{
na · sen i = nf · sen r
na = 1
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δ1 =
2t

cos r
sen r sen

(π
2
− i
)

⇒ δ1 =
2t sen r · sen i

cos r

Mas na︸︷︷︸
1

· sen i = nf sen r (pela lei de Snell)

⇒ δ1 =
2t sen r × nf sen r

cos r

δ1 =
2tnf sen

2r

cos r

δ2 = 2d = 2× t

cos r
× nf

δ2 =
2nf t

cos r
Diferença do caminho óptico:

δ = δ2 − δ1 =
2nf t

cos r
− 2nf t sen

2r

cos r
=

2nf t(

cos2 r︷ ︸︸ ︷
1− sen2r)

cos r

δ =
2nf t cos�

2 r

���cos r
⇒ δ = 2nf cos r

Interferência destrutiva

δ = 2nf t cos r = mλ︸︷︷︸
no inteiros de

comprimentos de onda

; m = 1, 2, 3, . . .

Interferência construtiva

δ = 2nf t cos r = (2m− 1)
1

2
× λ︸ ︷︷ ︸

no ı́mpar de meios
comprimentos de onda

; m = 1, 2, 3, . . .

ou

δ = 2nf t cos r =

(
m+

1

2

)
λ ; m = 0, 1, 2, . . .
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2.13 Exerćıcios

1) Determine as coordenadas do terceiro vértice de um triângulo retângulo
com pontos (a, b) e (c, d) como extremidades da hipotenusa, cujos ca-
tetos são paralelos aos eixos, como na figura.

x

y

0

(a, b)

(c, d)

(?, ?)

Solução: (a, d)

2) O gráfico de uma função linear f(x) passa pelos pontos (3, 2) e (5, 8).
Encontre o coeficiente angular m e o coeficiente linear b e a equação
que descreve f(x).

Solução:

f(x) = mx+ b, onde

Equação passa por (3, 2), então: 2 = 3 · 3 + b; b = −9 + 2 = −7
A equação fica: y = 3x− 7

3) Encontre a equação da reta paralela à reta y = 3x+ 2, que passa pelo
ponto (2, 14).

Solução:

A nova reta tem coeficiente angular 3, isto é, y = 3x+ b

Reta passa por (2, 14), então: 14 = 3 · 2 + b; b = 8

Equação da nova reta: y = 3x+ 8

4) Determine o ponto (x, y) onde o gráfico de (1) y = 3x+2 e (2) y = x−5,
se cruzam, e trace o gráfico das retas no plano cartesiano.

Solução:
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3x+ 2 = x− 5 ; 2x = −7;
Substituindo em (1), calculamos o valor de y

2y = 4− 21

O ponto é:

(
−7

2
,−17

2

)

−10 −5 5 10

−10

−5

5

10

0

(
− 7

2 ,−
17
2

)

y = 3x+ 2

x

y

y = x− 5

5) Encontre a equação da reta que passa pelo ponto (8, 1) e é perpendicular
à reta y = 4x+ 5.

Solução:

Sendo a reta original y = mx+ b, a reta perpendicular (y = m1x+ b1)
tem o coeficiente angular igual a: − 1

m
, e portanto m1 = −1

4

A reta perpendicular passa por (8, 1), então: 1 =
(
−1

4

)
· 8 + b1; 4 =

−8 + 4b1; b1 = 3

Reta perpendicular: y = −1
4
x+ 3

OBS: Dedução do coeficiente angular da reta perpendicular a uma reta
dada

6) Determine sen (2x) sabendo que tg (x) + cotg (x) = 8

Solução:
senx

cosx
+

cosx

senx
= 8 → sen 2x+ cos2 x = 8 sen x · cosx

→ 1 = 4 · 2 senx cosx → 1 = 4 sen (2x) → sen (2x) =
1

4

7) Desenhe o gráfico da função f(x) = 1 + senx

Solução:
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0

1

2

π
2

π 3π
2

2π−π
2

−π− 3π
2

−2π
x

y

8) Desenhe o gráfico, determine o peŕıodo e a imagem das funções:

a) f(x) = 3 senx

Solução: Peŕıodo 2π; Imagem: y variando no intervalo [−3, 3]
b) f(x) = cos(2x)

Solução: Expressão genérica f(x) = cos(kx), onde k = 2π
p
, pois

cada vez que x é múltiplo do peŕıodo p, a função se repete (lembrar
que, na função cosseno, o peŕıodo é 2π). Então, como k = 2, fica:
2 = 2π

p
→ p = π. Imagem: y variando no intervalo [−1, 1].

c) f(x) = cos(3x)

9) Determine o valor de x no triângulo abaixo:

C

A

B

120o

45o

x

10 m

Solução:

sen 45o

10
=

sen 120o

x
→

√
2
2

10
=

√
3
2

x
→
√
2 · x = 10 ·

√
3 → x = 10

√
3

2

10) O ı́ndice de poluição p(t) em unidades arbitrárias (u.a), numa certa
cidade é uma função linear do tempo t. Se o ı́ndice de poluição é 4,0
às 2 horas da tarde e 8,0 às 6 da tarde, faça uma predição de seu valor
às 9 horas da noite.
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Solução:

Podemos resolver o problema por uma simples regra de três (solução
1), ou escrevendo a reta p(t) (solução 2, geral), para qualquer valor de
t.

Solução 1:
8− 4

6− 2
=

x− 4

9− 2
→ 4

4
· 7 = x− 4 → x = 11(u.a)

Solução 2: Coeficiente angular m, da reta p(t); m =
8− 4

6− 2
= 1 →

p(t) = x+ b

Reta passa por (2, 4), então

4 = 2 + b → b = 2 → p(t) = x+ 2 → p(9) = 9 + 2 = 11(u.a)

11) Encontre as equações das retas que satisfaçam as condições dadas. Es-
crever a equação na forma:

a) inclinação (−5) e interseção com y = 3

b) inclinação 3 e interseção com x = 4

c) inclinação 2 e passa por (−1, 3)
d) passa por (2, 4) e (3, 9)

e) passa por (2, 4) e é horizontal

f) corta o eixo y em 4, e x em 2

Solução:

a) y = −5x+ b; passa por (0, 3); 3 = 0 + b → b = 3 → y = −5x+ 3

b) y = 3x+b; passa por (4, 0); 0 = 3 ·4+b→ b = −12→ y = 3x−12

c) y = 2x+ b → 3 = 2(−1) + b → b = 3 + 2 → y = 2x+ 5

d) y = mx+ b → m =
9− 4

3− 2
= 5 → y = 5x+ b ; passa por (2, 4);

4 = 5 · 2 + b → b = −6 → y = 5x− 6

e) y = b → b = 4 → y = 4

f) y = mx+ b → m =
0− 4

2− 0
= −2; b = 4 → y = −2x+ 4



2.13. EXERCÍCIOS 87

12) A reta L1, passa pelos pontos (2, 3) e (−2,−3) e é paralela à reta L2,
que passa pelos pontos (1, 5) e (x, 8). Calcule o valor de x.

Solução:

Os coeficientes angulares das duas retas devem ser iguais.

m1 = m2 →
−3− 3

−2− 2
=

8− 5

x− 1
→ −6
−4

=
3

x− 1
→ x = 2 + 1 = 3

13) Num experimento sobre a relação entre pressão e volume de um gás,
verificou-se que quando a pressão é 1 atmosfera (atm), o volume é 30
cm3, e quando a pressão atinge 10 atm, o volume é de 5 cm3. Faça o
gráfico da pressão em função do volume e calcule a inclinação da reta
que os pontos determinam.

Solução:

14) Uma dose de 4 mg de um medicamento é ministrada em um paciente. A
concentração da droga na corrente sangúınea do paciente após t horas,

pode ser calculada por K(t) =
4

1 + t3
(mg/ml) . Pergunta-se:

a) Qual a concentração sérica do medicamento, após 1 hora? Após
2 horas? Comparar com a concentração inicial.

b) Esboce um gráfico da concentração sérica do medicamento, em
relação ao tempo decorrido após sua aplicação.

15) O tempo, em minutos, que uma pessoa submetida a um teste, leva
para completar uma tarefa, pode ser calculado por meio da fórmula

T (x) =
440√
x
, onde x é o QI (coeficiente de inteligência) da pessoa.

Pergunta-se:

a) Quanto tempo a pessoa deve levar para completar a tarefa, se seu
QI for 100?

b) Qual o QI de uma pessoa que termina o teste em 40 minutos?

16) Um biólogo pretende fazer duas soluções qúımicas. Há 36 g do reagente
I, 36 g do reagente II e 66 g do reagente III. Cada litro da solução A
requer 1 g do reagente I, 4 g do reagente II e 6 g do reagente III. Para
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cada litro do regente B, são necessários 3 g do reagente I, 1 g do rea-
gente II e 3 g do reagente III.
Para obter quantidades máximas em litros, quantos litros de cada
solução, isoladamente, deverá fazer?

17) O aĺıvio R (unidades arbitrárias u.a.) que uma aspirina provoca, é
igual a quatro vezes o tempo t decorrente desde que é ingerida, menos
o mesmo intervalo de tempo t elevado ao quadrado.
Expresse a quantidade de aĺıvio como uma função do tempo, e desenhe
o gráfico da função. Qual o intervalo de tempo para o qual o efeito é
máximo?

Solução:

R(t) = 4t− t2 = t(4− t), de onde se conclui que o gráfico corta o eixo
das abcissas em t = 0, e t = 4

Ponto de máximo: a parábola tem máximo − b

2a
= − 4

2(−1)
= 2

0

4

2 4
t

R(t)

18) A porcentagem de ovos de mariposas das maçãs, que sobrevivem é de
N(T ), onde a temperatura T oC é dada por: N(T ) = −0,53T 2+25T −
209, para a faixa 15 ≤ T ≤ 30. Perguntas:

a) Qual a porcentagem de ovos que sobrevivem quando a tempera-
tura é 15oC?

b) Qual a porcentagem que sobrevive a 30oC?

c) A que temperatura a taxa de sobrevivência dos ovos é máxima?

d) Qual porcentagem sobrevive na temperatura ótima?
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19) Um guarda florestal tem uma escolha entre duas abordagens de manejo
da vida selvagem. A primeira produzirá uma população f(x) de cervos
no final de x anos, onde f(x) = 20x2−80x+500. A segunda abordagem
levará à produção de cervos g(x) no final de x anos, onde g(x) =
−50x2 + 400x+ 500. Pergunta-se:

a) Qual abordagem leva à maior população de cervos no final de 2
anos? E de 4 anos?

b) Em que ponto no tempo, as duas abordagens levarão à mesma
população?

c) Desenhar os gráficos de f(x) e g(x) num sistema de coordenadas
ortogonais.

d) Qual abordagem você recomendaria para produzir o maior número
posśıvel de cervos em um tempo indefinido?

20) Usando sen 2x+ cos2 x = 1, encontre:

a) 1 + tg 2x = sec2 x, para x ̸= π
2
+ kπ, k ∈ Z

b) 1 + cotg 2x = cossec 2x, para x ̸= kπ, k ∈ Z

Solução:

a)
sen 2x

cos2 x
+

cos2 x

cos2 x
=

1

cos2 x
→ tg 2x+ 1 = sec2 x

b)
sen 2x

sen 2x
+

cos2 x

sen 2x
=

1

sen 2x
→ 1 + cotg 2x = cossec 2x

21) CÁLCULO ESPESSURADE CORTE ULTRA-FINO SOBRE SUPERFÍCIE

DA ÁGUA NOULTRAMICRÓTOMO, POR INTERFERÊNCIOMETRIA

22) CÁLCULODE ESPESSURADE CORTE ULTRAFINO NOMICROSCÓPIO

ELETRÔNICO DE TRANSMISSÃO USANDO A PARALAXE EN-
TRE IMAGENS

23) A partir da equação (x − x0)
2 + (y − y0)

2 = R2, que representa uma
circunferência com centro em (x0, y0) e raio R, ache a equação geral da
circunferência, e calcule as coordenadas do centro e o raio da circun-
ferência x2 + y2 − 6x+ 10y + 9 = 0.
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24) Represente graficamente:

a) y = 4− x2

b) y = x− 1

c) y = x2

d) y = (x− 1)2

e) y = (x+ 1)2

f) −2 ≤ y ≤ 5

g) y ≥ x2 − 2

25) Para cada uma das funções abaixo, determine: a) Domı́nio (D), b)
Gráfico cartesiano, c) Imagem (I), e d) diga se é injetora (ou não),
sobrejetora (ou não).

I) f = {(x, y) ∈ R2 | y = |x| − 3}
II) f = {(x, y) ∈ R2 | y = 1− |x|}
III) f = {(x, y) ∈ R2 | y = 4− 2|x|}
IV) f = {(x, y) ∈ R2 | y = |x|+ x+ 2}
V) f = {(x, y) ∈ R2 | y = |2x+ 1|}

VI) f =
{
(x, y) ∈ R2 | y = |x|

x

}
VII) f =

{
(x, y) ∈ R2 | y = x+ |x|

x

}
VIII) f = {(x, y) ∈ R2 | y = x2 − 4}
IX) f = {(x, y) ∈ R2 | y = |x2 − 4|}
X) f = {(x, y) ∈ R2 | y = −x2 + 2x+ 8}

26) A Fração F da luz que é absorvida por qualquer gás no ar está relaci-
onada de forma logaŕıtmica com a concentração c do gás, e a distância
d percorrida pela luz; esta relação é chamada de Lei de Beer-Lambert :

ln(1− F ) = −Kcd

Nesta equação, K é uma constante de proporcionalidade. Mostre que,
para concentrações próximas de zero, (p.ex., onde Kcd = 0,001), F
relaciona-se quase linearmente com c, enquanto que para valores mai-
ores de Kcd (p. ex., próximos de 2), quando dobra a concentração, a
absorção de luz não aumenta o dobro (a primeira situação é análoga ao



2.13. EXERCÍCIOS 91

caso das moléculas traço que absorvem na região da janela, ao passo
que a segunda situação é pertinente à absorção do dióxido de carbono).
(Qúımica ambiental, Colin Baird. ARTMED Editora S.A.)

27) Uma pessoa aplicou a importância de R$ 500,00 numa instituição bancária
que paga juros mensais de 3,5%, no regime de juros compostos. Quanto
tempo após a aplicação, o montante será de R$ 3500,00?

Solução:

M = C · (1 + i)t

M : montante; C: capital; i: taxa; t: tempo

3500 = 500 · (1 + 0,035)t

3500

500
= 1,035t

1,035t = 7

t · log 1,035 = log 7

t =
0,8451

0,0149

t = 56,7

O montante de R$ 3500,00 será originado após 56 meses de aplicação.

28) Em uma determinada cidade, a taxa de crescimento populacional é de
3% ao ano, aproximadamente. Em quantos anos a população desta
cidade irá dobrar, se a taxa de crescimento continuar a mesma?
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Solução:

População inicial = P0

População após t anos = P0 · (1,03)t = Pt

Supondo que a população dobrará em relação ao ano-base após t anos:

Pt = 2 · P0

P0 · (1,03)t = 2 · P0

1,03t = 2

Aplicando logaritmo

log 1,03t = log 2

t · log 1,03 = log 2

t · 0,0128 = 0,3010

t = 0,3010/0,0128

t = 23,5

A população dobrará em aproximadamente 23,5 anos.

29) Determine o tempo que leva para que 1000 g de certa substância radio-
ativa, que se desintegra à taxa de 2% ao ano, se reduza a 200 g. Utilize
a expressão:

Q = Q0 · e−rt, em que Q é a massa da substância, r é a taxa e t é o
tempo em anos.

Solução:

Q = Q0 · e−rt

200 = 1000 · e−0,02t

200/1000 = e−0,02t

1/5 = e−0,02t

− 0,02t = ln(1/5)

− 0,02t = ln 1− ln 5

− 0,02t = − ln 5

0,02t = ln 5

t = ln 5/0,02

t = 1,6094/0,02

t = 80,47

A substância levará 80,47 anos para se reduzir a 200 g.
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30) Um estudo sobre o crescimento médio de crianças, com idades de 1 a
12 anos, obteve a fórmula h = log(100,7 ·

√
i) , onde h é a altura, em

metros, e i a idade, em anos. Por esta fórmula, qual seria a altura de
uma criança de 10 anos?

Solução:

h = log(100,7 ·
√
i)

h = log 100,7 + log
√
i

h = 0,7 log 10 + log
√
10

h = 0,7 log 10 + log 10
1
2

h = 0,7 log 10 + log 10
1
2

h = 0,7 +
1

2
h = 1,2 m

31) Simplifique a expressão: y =
sen

(
π
2
− x
)
· cos

(
π
2
+ x
)

sen
(
π
2
+ x
)
· cos

(
π
2
− x
) ; x ̸= kπ

2
, k ∈ Z

Solução:

sen
(π
2
− x
)
= cosx; cos

(π
2
+ x
)
= − senx

sen
(π
2
+ x
)
= cosx; cos

(π
2
− x
)
= sen x

y =
cosx · (− senx)

cosx · senx
= −1

OBS: As funções seno e cosseno estão defasadas entre si de 90o, sendo
que a função cosseno está adiantada de 90o em relação à função seno.

32) Em um śıtio são criados coelhos e galinhas. Em certo momento, no
total, estes animais somam 50 cabeças e 140 pés. Qual a razão entre o
número de coelhos e o número de galinhas?

Solução:

C: coelhos; G: galinhas

C +G = 50 −→ −2C − 2G = −100

4C + 2G = 140 −→ 2C = 40 −→ C = 20 −→ G = 30 −→ C

G
=

2

3
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33) Numa subtração, a soma do minuendo com o subtraendo e o resto vale
412. Qual o valor do minuendo?

Solução:

Minuendo: M ; Subtraendo: S; Resto: R

M + S +R = 2M −→M =
412

2
= 206

34) Uma torneira enche totalmente um certo tanque em 2 horas, enquanto
o ralo deste tanque pode esvaziá-lo em 5 horas. A partir da condição
do tanque vazio, ambos foram abertos simultaneamente. Após 3 horas
de funcionamento, o ralo entupiu por completo. Após o entupimento,
em quanto tempo o tanque transbordará?

Solução:
Q: vazão (volume/unidade de tempo); V : volume total; t: tempo; Qi :
vazão para o interior; Qe vazão para o exterior; Vi : volume introduzido
após 3 horas; Ve : volume retirado após 3 horas.

Q =
V

t
Após 3 horas:

Vi − Ve = Qi · t−Qe · t =
V

2
· 3− V

5
· 3 =

15− 6

10
· V =

9

10
· V

Resta o volume de
1

10
·V , cujo tempo para encher, com o ralo entupido,

será de:

t =
1
10
V

Qi

=
V
10
V
2

=
1

10
· 2
1
=

1

5
hora = 12 min

Ou:

Considerando que em uma hora, a torneira enche meio tanque:
V

2
, e

que em uma hora, o ralo retira do tanque:
V

5

(3 + t) · V
2
− 3 · V

5
= V

t =
1

5
hora = 12 min

35) Um reservatório na forma de um cilindro circular reto, com o raio da
base e altura, iguais a 1 m, contém 15 L de água e deverá ser completado
com água fornecida por uma torneira cuja vazão é de 5 L de água
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por minuto. Qual o tempo para encher completamente o reservatório?
Solução:

Vr: volume do reservatório = πr2h = 3,14 m3 = 3,14 · 1000 litros = 3140 L

3140 litros − 15 litros = 3125 litros

3125 litros ÷ 5 litros/min = 625 min

625 min÷ 60 = 10h e 25min

36) O número máximo de latas ciĺındricas de 8 cm de altura e 3 cm de raio
que podem ser guardadas em uma caixa cúbica de 1 m3 de volume,
corresponde a?

Resposta: 3072

37) A Alometria estuda a relação entre medidas de diferentes partes do
corpo humano. Segundo a Alometria, a área A da superf́ıcie corporal de
uma pessoa, relaciona-se com a sua massa m pela fórmula A = k ·m 2

3 ,
em que k é uma constante positiva. Considerando que no peŕıodo
que vai da infância até a maturidade de um indiv́ıduo, sua massa é
multiplicada por 8, por quanto será multiplicada a área da superf́ıcie
corporal?

Solução:

A = k ·m
2
3 e S = k · (8m)

2
3 = k · 8

2
3 ·m

2
3

Então:

S

A
=

k · 8 2
3 ·m 2

3

k ·m 2
3

= 8
2
3 = (23)

2
3 = 22 = 4 −→ S = 4A

38) A magnitude de terremotos é medida numa escala denominada “Escala
Richter” que possui uma pontuação de 0 a 9 graus. A magnitude
em graus, nessa escala, é o logaritmo da medida da amplitude das
ondas produzidas pela liberação da energia do terremoto, medidas por
sismógrafos, segundo a fórmula:
M = logA− logA0, onde M é a magnitude, A a amplitude máxima, e
A0 uma amplitude de referência.

Para calcular a energia liberada, usamos I =
2

3
log

(
E

E0

)
, onde I varia

de 0 a 9, e E é a energia liberada em kWh, e E0 = 7 · 10−3 kWh.
Perguntas:
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a) Compare as magnitudes de um terremoto de 6 graus de magnitude,
com outro de 8 graus de magnitude, na escala Richter.
b) Calcule a energia liberada por um terremoto de grau 6 na escala
Richter.

Solução:

a) M1 −M2 = (logA1 − logA0)− (logA2 − logA0)

6− 8 = logA1 − logA2 −→ −2 = log

(
A1

A2

)
−→ 10−2 =

A1

A2

−→ A2 = 100A1

b) 6 =
2

3
log

(
E

7 · 10−3

)
−→ 9 = log

(
E

7 · 10−3

)
−→ 109 =

E

7 · 10−3

E = 7 · 106kWH

39) (FUVEST) A soma e o produto das ráızes da equação do 2o grau (4m+
3n)x2− 5nx+ (m− 2) = 0 valem, respectivamente, 5/8 e 3/8. Calcule
o valor de m+ n.

Solução:

5n

4m+ 3n
=

5

8
e

m− 2

4m+ 3n
=

3

8
5n

4m+ 3n
=

5

8
−→ 8n = 4m+ 3n −→ 5n = 4m −→ n =

4

5
m

m− 2

4m+ 3n
=

3

8
−→ m− 2

4m+ 3 · 4
5
m

=
3

8
−→ 5m− 10

20m+ 12m
=

3

8

→ 5m− 10

32m
=

3

8
→ 5m− 10

4m
= 3→ 5m− 10 = 12m→ m = −10

7

∴ m+ n = m+
4

5
m =

9

5
m =

9

5
·
(
−10

7

)
= −18

7

40) (PUC–MG) Os números “m” e “n” são ráızes da equação x2 − 2rx +
r2 − 1 = 0. Qual é o valor de m2 + n2?
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Solução:

m+ n = 2r

m · n = r2 − 1

(m+ n)2 = m2 + 2mn+ n2

(2r)2 = m2 + 2(r2 − 1) + n2

4r2 − 2r2 + 2 = m2 + n2

2(r2 + 1) = m2 + n2

41) f(x) =


x+ 6 x ≤ −4√
16− x2 −4 < x < 4

6− x 4 ≤ x

0−4 4

−6 6
x

y

A função é descont́ınua em x = −4 e x = 4. Não é posśıvel tornar
cont́ınua pois lim

x→(−4)−
f(x) ̸= lim

x→(−4)+
f(x) e lim

x→4−
f(x) ̸= lim

x→4+
f(x).

42) F (x) =


x− 2 se x < 0
0 se x = 0
x2 + 1 se 0 < x

DF = R
Im(F ) =]−∞,−2[∪ [2]∪ ]2,+∞[
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0

1

−2

2

x

y

43) F (x) =
(x+ 1)(x2 + 3x− 10)

x2 + 6x+ 5
=

����(x+ 1)XXXX(x+ 5)(x− 2)

����(x+ 1)XXXX(x+ 5)
= x − 2 com

x ̸= −1
x ̸= −5 .

lim
x→−1

F (x) = −3
lim
x→−5

F (x) = −7

0 2

−1−5

−2
−3

−7

x

y

44) f(x) =
√
x2 − 3x− 4

x2 − 3x− 4 ≥ 0{
x1 + x2 = −3
x1 · x2 = −4

=⇒
{

x1 = 4
x2 = −1

Df(x) :
x ≥ 4
x ≤ −1

xmin =
3

2
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ymin = −∆

4a
= −9 + 16

4
=⇒ ymin = −25

4

0−1 4

3
2

− 25
4

x

y
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Caṕıtulo 3

Limites

Limite de uma variável

Dizemos que um ponto x0 pertencente ou não a um conjunto D, é limite da
variável x de D, se para qualquer intervalo aberto centrado em x0, x − x0

em valor absoluto, possa se tornar sempre menor do que uma quantidade
qualquer. Então, a variável x terá como limite finito o número x0, quando,
fixado um número δ > 0 tão pequeno quanto se queira, tenhamos:

x− x0 < δ ou x0 − δ < x < x0 + δ

Dizemos que x tende para x0 (notação: x → x0) ou que o limite de x é x0

(notação: lim
x→x0

x = x0).

A variável x pode tender para x0 por valores superiores a x0 ou por
valores inferiores. Dizemos que x0 é o limite da variável à direita ou limite à
esquerda, respectivamente.

Considerando o conjunto D, o ponto x0 com as caracteŕısticas descritas
acima, também é denominado “ponto de acumulação”.

Quando o conjunto D da variável x for tal que, para M tão grande quanto
se queira, tenhamos x > M , dizemos que o limite da variável é infinito
(notação: x→ ±∞; lim

x→±∞
x→ ±∞ ou lim

x→±∞
x→ ∓∞).

3.1 Limite de Funções Reais de Variável Real

3.1.1 Limite finito

Seja uma função y = f(x) definida em um intervalo (a, b) e seja x0 um
ponto de acumulação em (a, b). Dizemos que a função tem limite finito l,
quando a variável tende para x0, se para cada número ϵ positivo, existe em

101
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correspondência com ϵ, um número δ, tal que, para 0 < x− x0 < δ, se tenha
f(x)− l < ϵ. Representamos, pela desigualdade de Cauchy:

lim
x→x0

f(x) = l ⇐⇒ ∀ϵ > 0, ∃δ > 0 |x ∈ D
∧

0 < x−x0 < δ =⇒ f(x)−l < ϵ

OBS: Reforçamos que x0 pode pertencer ou não ao domı́nio D da função f .
Entretanto, se x0 ∈ D, então f(x0) pode ser igual ou diferente de l.

Por outro lado, seja y = f(x), definida em (−∞,+∞); se a variável x
tem limite infinito, y terá para limite finito o valor l, se para cada ϵ positivo,
existe em correspondência com ϵ, um número M tal que, para x > M se
tenha f(x)− l < ϵ.
Representação: lim

x→+∞
f(x) = l ou lim

x→−∞
f(x) = l, se caso se tenha, respecti-

vamente, x positivo ou negativo.

3.1.2 Limite infinito

Seja uma função y = f(x) definida no intervalo (a, b) e x0 pertencente ao in-
tervalo, um ponto de acumulação. Dizemos que y = f(x) tem limite infinito,
quando x tem limite finito x0, se para cada número positivo M , existe em
correspondência com M , um número positivo δ tal que, para 0 < x− x0 < δ
se tenha f(x) > M .
Representação: lim

x→x0

f(x) = ±∞, conforme f(x) tenda para infinito por

positivos ou negativos.
Por outro lado, seja uma função y = f(x) definida em (−∞,+∞). Dize-

mos que a função tem limite infinito, quando a variável x também tem limite
infinito, se para cada M existe em correspondência com M , um número M1,
tal que, para x > M1 se tenha f(x) > M .
Representação: lim

x→+∞
f(x) = ±∞, ou lim

x→−∞
f(x) = ±∞.

3.1.3 Propriedades Fundamentais dos Limites

1) O limite de uma constante é a própria constante.

2) Uma função uniforme y = f(x) não pode ter dois limites distintos num
mesmo ponto.

3) Se lim
x→x0

f(x) = l ̸= 0, a função f(x) tem o mesmo sinal de l para

l − ϵ < f(x) < l + ϵ; (ϵ > 0).

4) Se duas funções f(x) e g(x) têm valores iguais para 0 < x − x0 < δ,
(δ > 0), se lim

x→x0

f(x) = l, então, lim
x→x0

f(x) = lim
x→x0

g(x) = l.
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5) Sejam f(x), g(x) e φ(x) funções de x definidas em (a, b) e x0 um ponto
de (a, b), se

(I) lim
x→x0

f(x) = lim
x→x0

g(x) = l

e

(II) f(x) ≤ φ(x) ≤ g(x)

para todo ponto de (a, b), diferente de x0, então: lim
x→x0

φ(x) = l.

Śımbolos de indeterminação:

∞−∞ ; ∞× 0 ;
0

0
;
∞
∞

; ∞0; 00 e 1±∞

Exemplos:

1) s = x2 + x; t = x2 + 1 ∴ lim
x→∞

(s+ t) =∞+∞ =∞

2) s = 2; t = −x; lim
x→∞

s+ t = 2−∞ = −∞

3) s = x2 + x+ 1; t = x− 5 ∴ lim
x→∞

s× t = +∞×+∞ = +∞

4) lim
x→+∞

√
2

x+ 1
=

√
2

∞
= 0

5) lim
x→+∞

1
x
1
x2

=
0

0
mas

1
x
1
x2

= x ∴ lim
x→+∞

= +∞

6) lim
x→+∞

(x2 + x+ 1)π = +∞π

7) lim
x→+∞

(
1

x

)x

= 0+∞ = 0

8) lim
x→+∞

(
1

x2

)−x

= 0−∞ = +∞

9) lim
x→+∞

(
1

x

)−
√
2

= 0−
√
2 = +∞

OBSERVAÇÃO:
Denomina-se função algébrica racional inteira, função polinomial ou po-
linômio, à expressão abaixo, com n positivo, e an ̸= 0.

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0
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De acordo com limites, o limite da função algébrica racional inteira, f(x),
quando x→ a, é f(a), ou seja, lim

x→a
f(x) = f(a).

O limite da função racional inteira f(x), quando x→∞, é igual ao limite
do termo de mais alto valor f(x).

Demonstração. Colocando anx
n em evidência, fica:

f(x) = anx
n

(
1 +

an−1

anx
+

an−2

anx2
+ . . .+

a1
anxn−1

+
a0

anxn

)
A expressão entre parênteses tende para 1, então:

lim
x→∞

f(x) = lim
x→∞

anx
n

Exemplo:

1) lim
x→+∞

2x2 − 5x+ 9 = lim
x→+∞

2x2 = +∞

2) lim
x→−∞

x3 + 7x− 1 = lim
x→−∞

x3 = −∞

3.1.4 Limite de uma função racional:

Assim como as funções polinomiais, funções racionais são casos particulares
das funções algébricas, as quais envolvem as operações algébricas (adição,
subtração, multiplicação, divisão, potenciação e radiciação).

Seja y =
f(x)

g(x)
uma função racional, na qual f(x) e g(x) são polinômios

racionais inteiros. Então:

Se lim
x→a

f(x) = f(a) e lim
x→a

g(x) = g(a) ̸= 0 =⇒ lim
x→a

f(x)

g(x)
=

f(a)

g(a)
.

Exemplo:

lim
x→1

x2 + 3x+ 5

x2 − 2x− 8
=

1 + 3 + 5

1− 2− 8
= −1

Caso haja indeterminação no ponto:

Forma indeterminada: 0
0

Se f(a) = g(a) = 0, teremos lim
x→a

f(x)

g(x)
=

0

0
.

Se dividirmos ambos os membros por (x − a), obtendo f1(x) e g1(x) como
quocientes, temos:

lim
x→a

f(x)

g(x)
= lim

x→a

f1(x)

g1(x)
=

f1(a)

g1(a)
.
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Caso f1(a) = g1(a) = 0 devemos dividir f1(a) = g1(a) = 0 por x−a, achando

o limite lim
x→a

f2(x)

g2(x)
, e assim sucessivamente.

Exemplo:

lim
x→1

2x2 − 4x+ 2

x3 − x2 − x+ 1
=

0

0
, mas lim

x→1

2x2 − 4x+ 2

x3 − x2 − x+ 1
= lim

x→1

2(x+ 1)(x− 1)

(x+ 1)(x+ 1)(x− 1)
=

lim
x→1

2

x+ 1
=

2

2
= 1

Forma indeterminada: ∞
∞

Seja obter lim
x→±∞

f(x)

g(x)
= lim

x→±∞

anx
n + an−1x

n−1 + . . .+ a1x+ a0
bmxm + bm−1xm−1 + . . .+ b1x+ b0

=
∞
∞

Para eliminar a indeterminação, fazemos:

lim
x→±∞

anx
n

bmxm
×

1 + an−1

an
· 1
x
+ an−2

an
· 1
x2 + . . .+ a1

an
· 1
xn−1 +

a0
an
· 1
xn

1 + bm−1

bm
· 1
x
+ bm−2

bm
· 1
x2 + . . .+ b1

bm
· 1
xm−1 +

b0
bm
· 1
xm

= lim
x→+∞

f(x)

g(x)

Quando x → ±∞, temos: lim
x→±∞

f(x)

g(x)
= lim

x→±∞

anx
n

bmxm
· 1 = lim

x→±∞

anx
n

bmxm
=

lim
x→±∞

an
bm

xn−m

Temos três casos posśıveis:

i) Caso n = m; lim
x→±∞

f(x)

g(x)
=

an
bn

ii) Caso n < m; lim
x→±∞

f(x)

g(x)
=

an
bnm

· xm−n = 0

iii) Caso n > m; lim
x→±∞

f(x)

g(x)
=

an
bnm

· xm−n = ±∞

Neste caso, podemos escrever que f tem limite
an
bm

no infinito, ou seja:

lim
x→+∞

f(x)

g(x)
=

an
bm

; lim
x→−∞

f(x)

g(x)
=

an
bm

Exemplos:

1) lim
x→+∞

5x3 + 2x− 1

x3 − 3x2 + 7
=

5x3

x3
=

5

1
= 5

2) lim
x→+∞

x2 − x+ 2

3x3 + 2x2 + 3x+ 5
=

x2

3x3
=

1

3x
= 0
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3) lim
x→+∞

3x5 + 2x− 3

−2x3 + x2 + 3x
= lim

x→+∞

3x2

−2
= −∞

4) lim
x→+∞

x3 + 8

3x2 + 5x+ 5
= lim

x→+∞

x

3
= +∞

5) lim
x→−∞

x6 + 2x2 + 2

x4 − x− 1
= lim

x→−∞
x2 = +∞

6) lim
x→−∞

3x5 + x

2x4 + 3
= lim

x→−∞

3x

2
= −∞

3.1.5 Alguns limites fundamentais:

1) lim
x→0

senx

x
= 1

Verifica-se que a razão senx
x

, tende para a unidade, quando x se apro-
xima de zero.

Demonstração. Considerando a figura , seja x o ângulo central AOP
no ćırculo unitário (r = unidade).

Então:

– O arco AP = x, e o setor OAP = 1
2
x;

– A desigualdade ∆OMP < setor OAP < ∆OAQ é equivalente a:
1
2
senx · cosx < 1

2
x < 1

2
tg x.

Dividindo por 1
2
senx, temos: cosx <

x

senx
<

1

cosx
=⇒ 1

cosx
>

senx

x
> cosx.

Quando x tende a zero, tanto cos x como 1
cosx

tendem ao limite, que
é 1, e portanto, como senx

cosx
está compreendido entre ambos, podemos

afirmar que:

lim
x→0

senx

x
= 1
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O
A

M

P

Q

x

2) lim
x→0

1− cosx

senx
= 0

Da trigonometria, temos a expressão: 1− cosx = 2 sen 2x

2
.

Então,
1− cosx

x
=

2 sen 2 x
2

x
= sen

x

2

sen x
2

x
2

.

Quando x tende a zero,
x

2
e sen

x

2
também tendem a zero, e portanto,

pela dedução do item (1) anterior,
sen x

2
x
2

tende ao limite 1.

Então, podemos concluir que: lim
x→0

1− cosx

x
= 0.

3) Número e (dado):

lim
x→+∞

(
1 +

1

x

)x

= e;

e = 2, 71828 base do sistema dos logaritmos naturais (logaritmos nepe-
rianos).

Exemplos:

1) lim
x→0

(1 + x)
1
x = e; realmente, fazendo x =

1

z
, quando x → 0, z → ∞

∴ lim
z→∞

(1 + x)
1
x = lim

z→+∞

(
1 +

1

z

)z

= e

2) lim
x→∞

(
1 +

k

x

)x

= ek; k real relativo.

Demonstração. Fazendo
k

x
= z, temos x =

k

z
; quando x→∞, z → 0
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∴ lim
z→0

(1 + z)
k
z = lim

z→0
(1 + z)

1
z

k

.

Mas, lim
z→0

(1 + z)
1
z = e =⇒ lim

x→∞

(
1 +

k

x

)x

= lim
z→0

(1 + z)
1
z

k

= ek

3) lim
x→∞

(
1− k

x

)x

= e−k =
1

ek

4) lim
x→∞

(
1 +

1

x

)x+k

= lim
x→∞

(
1 +

1

x

)x

·
(
1 +

1

x

)k

= e · 1 = e

5) lim
x→0

ln(1 + x)

x
= lim

x→0
ln(1 + x)

1
x = ln

(
lim
x→0

(1 + x)
1
x

)
= ln e = 1

6) lim
x→1

lnx

x− 1
; fazer x = u+ 1; quando x→ 1, u→ 0

∴ lim
x→1

lnx

x− 1
= lim

u→0

lnu+ 1

u
= 1, de acordo com o exemplo (5), acima.

7) Mostre que lim
x→0

ax − 1

x
= ln a

Verificamos que a expressão representa uma indeterminação, pois,

lim
x→0

ax − 1

x
=

1− 1

0
=

0

0
; (indeterminação)

Fazendo ax = 1 +
1

x
=⇒ x = loga

(
1 +

1

x

)
=⇒ ax − 1

x
=

1 + 1
x
− 1

loga
(
1 + 1

x

) =
1
x

loga
(
1 + 1

x

) =
1

x loga
(
1 + 1

x

) ; ou ax − 1

x
=

1

loga
(
1 + 1

x

)x ;
∴ lim

x→0

ax − 1

x
=

1

ln e
pois, quando x→ 0, n→∞

Mas, loga e× ln a = 1 ∴ loge a =
1

loga e
= ln a =⇒ lim

x→0

ax − 1

x
= ln a

3.1.6 Limite de uma função à direita de um ponto

Seja y = f(x), definida em (a, b) e x0 um ponto de (a, b). Diz-se que f(x)
tem limite à direita, l, quando a variável x tem limite à direita, x0, se para
cada ϵ positivo, existe em correspondência com ϵ, um número positivo δ tal
que, para x0 < x < x0 + δ, se tenha f(x)− l < ϵ.
Representação: lim

x→x+
0

f(x) = l
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Exemplo: lim
x→0+

x√
5 · x

=
1√
5

3.1.7 Limite de uma função à esquerda de um ponto

Seja y = f(x) definida em (a, b) e x0 um ponto de (a, b). Diz-se que f(x) tem
um limite à esquerda, l, quando a variável x tem limite à esquerda, x0, se
para cada ϵ positivo, existe, em correspondência com ϵ, um número positivo
δ, tal que, para x0 − δ < x < x0, se tenha f(x)− l < ϵ.
Representação: lim

x→x−
0

f(x) = l

OBS: os limites laterais, ou seja, limite à esquerda e limite à direita, podem
ser distintos ou não. É condição necessária e suficiente para que exista o
lim f(x) num ponto, que os limites existam e sejam iguais.

3.1.8 Função cont́ınua

Diz-se que uma função y = f(x), definida em (a, b) é cont́ınua em um ponto
x0 de (a, b), se:

i) existe lim
x→x0

f(x), e é finito;

ii) lim
x→x0

f(x) = f(x0)

Diz-se que f(x) definida em (a, b) é cont́ınua nesse intervalo, se for cont́ınua
em todos os pontos de (a, b).
Resumo: Uma função f(x) diz-se descont́ınua em um ponto a, se ao menos
uma das condições abaixo não forem satisfeitas:

i) f(x) é definida em a

ii) Existe lim
x→a

f(x) e é finito

iii) lim
x→a

f(x) = f(a)

Exerćıcios:

1) Determinar os limites, sendo n inteiro e positivo:

a) lim
n→∞

n− 1

n+ 2

Solução: lim
n→∞

n− 1

n+ 2
= lim

n→∞

n

n
= 1



110 CAPÍTULO 3. LIMITES

b) lim
n→∞

n+ 1

n2 + 3

Solução: lim
n→∞

n+ 1

n2 + 3
= lim

n→∞

n

n2
= 0

c) lim
n→∞

(√
2n+ 1−

√
2n− 1

)
Solução: lim

n→∞

(√
2n+ 1−

√
2n− 1

)
= lim

n→∞

(√
2n+ 1−

√
2n− 1

)
×

√
2n+ 1 +

√
2n− 1√

2n+ 1 +
√
2n− 1

= lim
n→∞

2 × 1√
2n+ 1 +

√
2n− 1

= lim
n→∞

2 ×
1

∞
= 0

d) lim
x→0

x · 1
x

Solução: lim
x→0

x · 1
x
= zero × número entre − 1 e + 1 = 0

e) lim
x→0−

e
1
2x

Solução: lim
x→0−

e
1
2x = e−∞ = 0

f) lim
x→0+

e
1
2x

Solução: lim
x→0+

e
1
2x = e+∞ =∞

g) lim
x→0+

x

x

Solução: lim
x→0+

x

x
=

x

x
= 1

h) lim
x→0−

x

x

Solução: lim
x→0−

x

x
= −x

x
= −1

i) lim
x→3

4
√
x− 4
√
3

x− 3

Solução: lim
x→3

4
√
x− 4
√
3

x− 3
= lim

x→3

√
x−
√
3

x− 3 4
√
x+ 4
√
3
= lim

x→3

√
x−
√
3

x− 3 4
√
x+ 4
√
3
×

√
x+
√
3

√
x+
√
3

= lim
x→3

1
4
√
x+ 4
√
3
√
x+
√
3

= lim
x→3

1
4
√
3 + 4
√
3
√
3 +
√
3

=

lim
x→3

1

2 4
√
32
√
3
=

1

4 · 3 1
4 · 3 1

2

=
1

4 · 3 3
4

=
1

4
4
√
33
×

4
√
3

4
√
3
=

4
√
3

12
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2) Sejam An a área e p o peŕımetro de um poĺıgono regular de n lados. Se
n cresce e p permanece constante, achar lim

n→∞
An.

Solução:

An = πr2; p = 2πr =⇒ r =
p

2π
Então, a área em função do peŕımetro, vale:

An = π
p2

4π2
=

p2

4π

3) O segmento de reta AB de comprimento l é dividido em n partes iguais;
constroem-se sobre cada parte, como na figura, triângulos equiláteros.
Se Sn é a soma dos peŕımetros, achar lim

n→∞
Sn.

Solução: Os valores de l e n, estão relacionados à figura abaixo.

Para n = 1, temos S1 = 1× 3l

1
= 3l

Para n = 2, temos S2 = 2× 3l

2
= 3l

Para n = 3, temos S3 = 3× 3l

3
= 3l

. . .

Conclusão: lim
n→∞

Sn = 3l
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Caṕıtulo 4

Derivadas

O problema das tangentes a gráficos.

A tangente (geométrica) ao gráfico a função y = ax2+bx+c, no ponto (x0, y0),
é a reta que passa por (x0, y0), com inclinação Ix0 = limx→x0 mx, onde mx é
a inclinação (tangente trigonométrica) da reta secante, pelos pontos (x0, y0)
e (x, ax2 + bx+ c), com (x ̸= x0). Veja a representação no gráfico abaixo:

y0

x0

ax2 + bx+ c

x
∆x

∆y

x

y

mx =
ax2 + bx+ c− ax2

0 − bx0 − c

x− x0

, x ̸= x0

=
ax2 − ax2

0 + b(x− x0)

x− x0

, x ̸= x0

= a(x+ x0) + b, x ̸= x0

= ax+ ax0 + b, x ̸= x0

Quando x→ x0, teremos, no limite:

y = 2ax0 + b

113



114 CAPÍTULO 4. DERIVADAS

O gráfico de y = mx, é uma reta faltando um ponto:

2ax0 + b

ax0 + b

x0 x

y

Teorema 4.0.1. Seja (x, y) um ponto do gráfico de y = ax2+ bx+ c. Então,
a inclinação da tangente ao gráfico, em (x, y) é:

Ix = 2ax+ b

Resumo do conceito de derivada de uma função:

Para cada x da função f(x), o valor de f ′(x), é a inclinação da tangente
(geométrica) ao gráfico de f(x). A função f ′(x) é a derivada de f(x), ou
seja:

f ′(x) = lim
x→x0

f(x)− f(x0)

x− x0

Exemplo: Traçar o gráfico aproximado (visual) da derivada da função abaixo

em x = 0, f ′(0) = 0
em x = 1, f ′(1) = −1
em x = −1, f ′(−1) = 1
para x > 0, f ′(x) < 0
para x < 0, f ′(x) > 0
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1f ′ f

−1 1 x

y

OBS:

a) A derivada só é definida num ponto x0 quando lim
x→x0

f(x)−f(x0)
x−x0

tende

para o mesmo valor, quando x se aproxima de x0 tanto pela direita
como pela esquerda. Então, no caso abaixo, a função f(x) = x não
tem derivada em x = 0. Portanto, o Domı́nio da função f ′(x), ou seja,
Df(x), não contém o ponto zero.

0

f ′

f ′

f

−1

1

x

y

b) O Domı́nio de f ′ é o conjunto de todos os números x para os quais a
função original apresenta uma tangente não vertical.
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ff ′

1

2

1 2
x

y

Teorema 4.0.2 (Teorema do valor médio). Toda corda ligando dois pontos
de uma função diferenciável, é paralela à tangente em algum ponto inter-
mediário.

T

P

Q

x̄a b x

y

T

TP

Q

x̄ x̄a b x

y
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f(x̄) =
f(b)− f(a)

b− a

OBS:

f

P

Q

a b x

y

A função f não
é diferenciável em
[a, b].

4.1 Processo de Diferenciação

Seja Df a derivada de f → Df = f ′.

Seja h(x) = f(x) + g(x) → D(f + g) = h′.

Então: D(x2 + 2x+ 5) = 2x+ 2.

Quando afirmamos que f é diferenciável, estamos dizendo que f tem uma
derivada em cada ponto de seu domı́nio.

Teorema 4.1.1. A derivada da função constante vale zero.
Sendo k, uma constante, Dk = 0.

Demonstração. f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

k − k

x− x0

= 0

Teorema 4.1.2. Se f é diferenciável, então kf também será, para todo k.
D(kf) = kDf

Demonstração. lim
x→x0

f(x)− f(x0)

x− x0

= f ′(x0)→ lim
x→x0

kf(x)− kf(x0)

x− x0

= kf ′(x0)

Exemplo: D(kx2) = 2kx

Teorema 4.1.3. Se f e g são diferenciáveis, então f + g também é dife-
renciável e: D(f + g) = Df +Dg

Demonstração. lim
x→x0

[f(x) + g(x)]− [f(x0) + g(x0)]

x− x0

= f ′(x0) + g′(x0)
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Teorema 4.1.4. Dxn = nxn−1 para todo n inteiro positivo.

Para a demonstração do teorema, utilizaremos a igualdade abaixo:

xn − xn
0 = (x− x0)(x

n−1 + xn−2x0 + . . .+ xxn−2
0 + xn−1

0 )

Demonstração. Seja f(x) = xn, então

f ′(x) = lim
x→x0

xn − xn
0

x− x0

= lim
x→x0

(x− x0)(x
n−1 + xn−2x0 + . . .+ xxn−2

0 + xn−1
0 )

x− x0

= lim
x→x0

(xn−1 + xn−2x0 + . . .+ xxn−2
0 + xn−1

0 )

→ f ′(x0) = nxn−1
0 → Dxn = nxn−1

Teorema 4.1.5. Se f é diferenciável em x0, então f é cont́ınua em x0, ou
seja, lim

x→x0

f(x) = f(x0).

Teorema 4.1.6. A derivada do produto de duas funções, é a derivada da pri-
meira multiplicada pela segunda função, adicionada à primeira multiplicada
pela derivada da segunda.

D(f · g) = f ′ · g + f · g′

Demonstração.

(f · g)′ = lim
x→x0

f(x) · g(x)− f(x0) · g(x0)

x− x0

= lim
x→x0

f(x) · g(x)− f(x0) · g(x) + f(x0) · g(x)− f(x0) · g(x0)

x− x0

= lim
x→x0

[f(x)− f(x0)]g(x) + [g(x)− g(x0)]f(x0)

x− x0

= f ′(x0) · g(x0) + f(x0) · g′(x0)

Teorema 4.1.7. Derivada da função rećıproca g(x) =
1

f(x)
:

g′(x0) = lim
x→x0

g(x)− g(x0)

x− x0

= lim
x→x0

1
f(x)
− 1

f(x0)

x− x0

= lim
x→x0

f(x0)− f(x)

f(x) · f(x0) · (x− x0)
= lim

x→x0

f(x)− f(x0)

x− x0

· −1
f(x) · f(x0)

=⇒g′(x0) =
−f ′(x0)

[f(x0)]2

=⇒D

(
1

f

)
=
−f ′

f 2
, com f(x) ̸= 0
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Teorema 4.1.8. Derivada do quociente de duas funções diferenciáveis:

D

(
f

g

)
=

f ′ · g − f · g′

g2

Demonstração. D
(

f
g

)
= D(f) · 1

g
+ f ·D

(
1
g

)
= f ′

g
+ f · −g′

g2
= f ′·g−f ·g′

g2

Teorema 4.1.9. Se n é um inteiro positivo, e f é uma função diferenciável,
então D(fn) = nfn−1f ′.

Demonstração. Seja g(x) = fn(x)

g′(x0) = lim
x→x0

fn(x)− fn(x0)

x− x0

= lim
x→x0

[f(x)− f(x0)] · [fn−1(x) + fn−2(x)f(x0) + . . .+ fn−1(x0)]

x− x0

= lim
x→x0

f(x)− f(x0)

x− x0

· lim
x→x0

[fn−1(x) + fn−2(x)f(x0) + . . .+ fn−1(x0)]

=⇒g′(x0) = nfn−1(x0) · f ′(x0)

OBS: Caso n seja negativo (n = −k, com k > 0), a mesma fórmula será
válida, em todos os pontos onde f(x) ̸= 0.

D(fn) = D(f−k) = D

(
1

fk

)
= −kfk−1 · f

′

f 2k
= −kf−k−1f ′ = nfn−1f ′

Resumo:

(a) Dk = 0

(b) D(kf) = kDf

(c) D(f + g) = Df +Dg

(d) Dxn = nxn−1

(e) D(f · g) = f ′ · g + f · g′

(f) D

(
1

f

)
=
−f
f 2

, (f ̸= 0)
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(g) D

(
f

g

)
=

f ′ · g − f · g′

g2
, (g ̸= 0)

(h) Dfn = nfn−1f ′

(i) D
√
f = Df

1
2 = 1

2
f

1
2
−1f ′ = 1

2
f− 1

2f ′ =
f ′

2
√
f

Exemplos:

1) D(7x10 − x8) = 70x9 − 8x7

2) D

(
1

x+ 1

)
=

−1
(x+ 1)2

3) D

(
x

x+ 1

)
=

1 · (x+ 1)− x · 1
(x+ 1)2

=
x+ 1− x

(x+ 1)2
=

1

(x+ 1)2

4) D

(
1

x2 + 1

)
=
−(2x)

(x2 + 1)2
=

−2x
(x2 + 1)2

5) D

(
y

y3 − 3

)
=

1 · (y3 − 3)− y · (3y2)
(y3 − 3)2

=
y3 − 3− 3y3

(y3 − 3)2
=
−2y3 − 3

(y3 − 3)2

6) D(7y4 − y2 + π) = 28y3 − 2y

7) Dx(x
3y + ay3 + xy2) = 3x2y + y2

8) Dy(x
3y + ay3 + xy2) = x3 + 3ay2 + 2xy

9) Da(x
3y + ay3 + xy2) = y3

10) D[(x2−x+1)(x2+x+1)] = (2x− 1)(x2+x+1)+ (x2−x+1)(2x+1)

11) D

(
x2 − x+ 1

x2 + x+ 1

)
=

(2x− 1)(x2 + x+ 1)− (x2 − x+ 1)(2x+ 1)

(x2 + x+ 1)2

12) D

(
x+ 1

x3 − x

)
=

1 · (x3 − x)− (x+ 1)(3x2 − 1)

(x3 − x)2
=
−2x3 − 3x2 + 1

(x3 − x)2

13) D[(x2 + x)2] = D(x4 + 2x3 + x2) = 4x3 + 6x2 + 2x

Exerćıcios resolvidos:

1) Calcule por qualquer método:



4.1. PROCESSO DE DIFERENCIAÇÃO 121

a) D
√
(x+ 1)(x+ 2)

Solução:

D
√
(x+ 1)(x+ 2) = D[(x+ 1)(x+ 2)]

1
2

=
1

2
[(x+ 1)(x+ 2)]

1
2
−1 · [1 · (x+ 2) + (x+ 1) · 1]

=
1

2
√

(x+ 1)(x+ 2)
· (2x+ 3)

=
2x+ 3

2
√

(x+ 1)(x+ 2)

b) D

(
x

(x2 + 2x+ 1)2

)
Solução:

D

(
x

(x2 + 2x+ 1)2

)
= D

(
f

g

)
=

f ′g − fg′

g2

=
1 · (x2 + 2x+ 1)2 − x · 2 · (x2 + 2x+ 1)(2x+ 2)

(x2 + 2x+ 1)4

=
(x+ 1)4 − 2x(2x+ 2)(x+ 1)2

(x+ 1)8

=
(x+ 1)4 − 4x(x+ 1)3

(x+ 1)8
=

(x+ 1)− 4x

(x+ 1)5

=
−3x+ 1

(x+ 1)5

c) D(x3 + x2 − x+ 7)712

Solução:

D(x3 + x2 − x+ 7)712 = 712(x3 + x2 − x+ 7)711 · (3x2 + 2x− 1)

d) D

(
x2 − 1

x2 + 1

)
Solução:

D

(
x2 − 1

x2 + 1

)
= D

(
f

g

)
=

f ′g − fg′

g2

=
2x · (x2 + 1)− (x2 − 1) · 2x

(x2 + 1)2
=

2x3 + 2x− 2x3 + 2x

(x2 + 1)2

=
4x

(x2 + 1)2
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e) D
√√

x

Solução:

D

√√
x = D

√
f =

f ′

2
√
f
, onde f =

√
x

D

√√
x =

1
2
√
x

2
√√

x
=

1

2
√
x
· 1

2
√√

x
=

1

4
√√

x3

f) D senx

Solução:

Dando a x um incremento ∆x, temos:

∆y = (y +∆y)− y = sen (x+∆x)− senx,

OBS: sen (a+ b)− sen (a− b) = 2 sen b · cos a
a+ b = x+∆x

a− b = x

⇒ a = x+ ∆x
2

e b = ∆x
2

⇒ ∆y = 2 sen
(
∆x
2

)
· cos

(
x+ ∆x

2

)
⇒ ∆y

∆x
=

2 sen
(
∆x
2

)
· cos

(
x+ ∆x

2

)
∆x

⇒ ∆y

∆x
=

sen
(
∆x
2

)
∆x
2

· cos
(
x+ ∆x

2

)
lim

∆x→0

∆y

∆x
= lim

∆x→0

sen
(
∆x
x

)
∆x
2

· lim
∆x→0

cos
(
x+ ∆x

2

)
⇒ Dsenx = cosx, ou y′ = cosx

4.2 Regra da Cadeia (Derivada de Função de

Função)

Sejam as funções f e g, e a função f(g).

⇒ Df(g) = f ′(g)g′
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∆f

∆x
=

∆f

∆x
· ∆g

∆g

=
∆f

∆g︸ ︷︷ ︸
f ′
g

· ∆g

∆x︸ ︷︷ ︸
g′x

Exemplo: Calcule as derivadas.

1) ϕ(x) = sen (3x+ 1)

Expressamos como uma função composta:

ϕ(x) = f
(
g(x)

)
com f(u) = senu f ′(u) = cosu

u = g(x) = 3x+ 1 g′(x) = 3

=⇒ ϕ(x) = D sen (3x+ 1) = [cos(3x+ 1)]D(3x+ 1) = 3 cos(3x+ 1)

2) y =
√
2x− 5

y =
√
u com u = 2x− 5

=⇒ y′x = y′u · u′
x =⇒ y′ =

1

2
√
u
· u′ =

1

A2
√
2x− 5

· A2

=⇒ y′ =
1√

2x− 5

3) y = sen 4x

y = senu com u = 4x

=⇒ y′ = ( senu)′ · u′
x = cosu · u′

x = cos 4x · 4
=⇒ y′ = 4 cos 4x

4) y =
1

cosx

y =
1

u
com u = cosx

=⇒ y′ = − 1

u2
· u′

x = − 1

cos2 x
· (− senx)

=⇒ y′ =
senx

cos2 x
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5) y = sen 2x

y = u2 com u = sen x

=⇒ y′ = 2u · u′
x = 2 sen x · cosx

=⇒ y′ = sen 2x

6) y = sen 3x

y = u3 com u = sen x

=⇒ y′ = 3u2 · u′
x

=⇒ y′ = 3 sen 2x · cosx

7) y = e−3x

y = eu com u = −3x
=⇒ y′ = eu · u′

x = e−3x · (−3)
=⇒ y′ = −3e−3x

8) y = log(1− 4x)

y = log u com u = 1− 4x

=⇒ y′ =
1

u
· u′

x =
1

1− 4x
· (−4)

=⇒ y′ =
4

4x− 1

9) y = tg 1
x

y = tg u com u = 1
x

=⇒ y′x = y′u · u′
x =

1

cos2 u
· −1
x2

=
1

cos2
(
1
x

) · −1
x2

=⇒ y′ =
−1

x2 · cos2
(
1
x

)
Generalização:

Seja y = f(u) com u = φ(v), v = g(z), z = h(t) e t = j(x)
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=⇒ ∆y

∆x
=

∆y

∆x
· ∆u

∆u
· ∆v

∆v
· ∆z

∆z
· ∆t

∆t

=⇒ ∆y

∆x
=

∆y

∆u
· ∆u

∆v
· ∆v

∆z
· ∆z

∆t
· ∆t

∆x

=⇒ lim
∆x→0

∆y

∆x
= lim

∆u→0

∆y

∆u
· lim
∆v→0

∆u

∆v
· . . .

=⇒ y′x = y′u · u′
v · v′z · z′t · t′x

Exemplos:

1) y = tg 2
(
1
x

)
y = u2 onde

{
u = tg 1

x
= tg v

v = 1
x

y′x = y′u · u′
v · v′x = 2u · 1

cos2 v
· −1
x2

= 2 tg
(
1
x

)
· 1

cos2
(
1
x

) · −1
x2

=⇒ y′ = −
2 sen

(
1
x

)
x2 · cos3

(
1
x

)
2) y = log

√
1− 4x2

y = log u com

{
u =
√
1− 4x2 =

√
v

v = 1− 4x2

y′x = y′u · u′
v · v′x =

1

u
· 1

2
√
v
· (−8x) = 1√

1− 4x2
· 1√

1− 4x2
· (−4x)

=⇒ y′ =
−4x

1− 4x2

3) y =
√

( sen 3x− 1)3

y =
√
u com


u = ( sen 3x− 1)3 = v3

v = sen 3x− 1 = z3 − 1
z = sen x

y′x = y′u · u′
v · v′z · z′x =

1

2
√
u
· 3v2 · 3z2 · cosx

=
1

2
√

( sen 3x− 1)3
· 3( sen 3x− 1)2 · 3 sen 2x · cosx
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=⇒ y′ = 9
2
sen 2x cosx

√
sen 3x− 1

4) y = arctg
(

1
1−4x2

)
y = arctg u com

{
u = 1

1−4x2 = 1
v

v = 1− 4x2

y′x = y′u · u′
v · v′x =

1

1 + u2
· −1
v2
· (−8x) = 1

1 +
(

1
1−4x2

)2 · 8x

(1− 4x2)2

=

XXXXXX(1− 4x2)2

(1− 4x2)2 + 1
· 8x
XXXXXX(1− 4x2)2

=⇒ y′ =
8x

(1− 4x2)2 + 1

5) y = sen 3(4x)

y = u3 com

{
u = sen (4x) = sen v
v = 4x

y′x = y′u · u′
v · v′x = 3u2 · cos v · 4 = 12 sen 2(4x) cos(4x)

6) y = e sen (2x)

y = eu com

{
u = sen (2x) = sen v
v = 2x

y′x = y′u · u′
v · v′x = eu · cos v · 2 = 2e sen (2x) cos(2x)

4.3 Derivadas de Funções Impĺıcitas

Uma função da forma y = f(x) é dita expĺıcita quando y está de um lado do
sinal “=” e x do outro lado.

Uma função impĺıcita apresenta-se sob forma:

f(x, y) = 0

onde x é a variável independente e y a função.

Exemplos:

a) 2x2y − x

y2
= 0

b) x2 + y2 −R2 = 0

c) 4x2 − 2xy − y2 − 5y − 1 = 0
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Calculemos as derivadas:

a) Derivando 2x2y − x
y2

= 0 em relação a x:

[2 · (2x) · y + 2x2 · y′]−
[
1

y2
· 1 + x · −2

y3
· y′
]
= 0

4xy + 2x2y′ − y − 2xy′

y3
= 0

4xy4 + 2x2y3y′ − y + 2xy′ = 0

y′(2x2y3 + 2x) = y(1− 4xy3)

y′ =
y(1− 4xy3)

2x(xy3 + 1)

b) Derivando x2 + y2 −R2 = 0 em relação a x:

2x+ 2y · y′ − 0 = 0

2yy′ = −2x

y′ = −x

y

Neste caso, a equação proposta poderia ser colocada sob a forma expĺıcita:

y2 = R2 − x2 e y =
√
R2 − x2

=⇒ y′ =
1

2
√
R2 − x2

· (−2x) = −x√
R2 − x2

= −x

y

c) Derivando 4x2 − 2xy − y2 − 5y − 1 = 0 em relação a x:

4 · (2x)− [2 · 1 · y + 2x · y′]− 2y · y′ − 5 · y′ − 0 = 0

8x− 2y + 2xy′ − 2yy′ − 5y′ = 0

y′(2x− 2y − 5) = 2(y − 4x)

y′ =
2(y − 4x)

2(x− y)− 5

4.4 Aplicações das Derivadas

As derivadas nos auxiliam a determinar:

• Se uma função tem máximo ou mı́nimo;

• Se uma curva, em um ponto qualquer, tem tangente horizontal, vertical
ou inclinada, o que dá a posição da curva neste ponto;
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• Se uma curva tem concavidade voltada para cima ou para baixo em
relação ao eixo das abscissas;

• Se a curvatura em um ponto é grande ou pequena, etc.

4.4.1 Traçar curvas; Pesquisa de Máximos e Mı́nimos

1) Inclinação de uma curva em um ponto.

y′ = tgα

Se y′ > 0 =⇒ ângulo agudo
y′ < 0 =⇒ ângulo obtuso
y′ = 0 =⇒ α = 0 ou π
y′ =∞ =⇒ α = π

2

Exemplo: y =
1

x
; y′ = − 1

x2

Se x = 0 y′ = −∞ a tangente é vertical
x =∞ y′ = 0 a tangente é horizontal
x = −1 y′ = −1 = tgα =⇒ α = 135o

−1

−1
x

y

x

y′

2) Variação de uma função.

Teorema 4.4.1. Se a derivada é positiva a função cresce. Se a deri-
vada é negativa, a função decresce.

Exemplo: No caso y =
1

x
; y′ = − 1

x2

y′ é sempre negativa =⇒ y sempre decresce.

3) Determinação de máximos e mı́nimos.
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Teorema 4.4.2. Quando uma função y = f(x) passa por um mı́nimo
ou por um máximo, sua derivada anula-se, mudando de sinal. E vice-
versa.

A

Máximo

α = 0

α

y′ (+) (−)

x

y

B

Mı́nimo

α = 0

α

y′ (−) (+)

x

y

4) Pontos de inflexão.

Exemplo: y = (x− 2)3 + 1 e y = −(x− 2)3 + 1

P

x

y

P

x

y

A tangente é horizontal nestes pontos mas a derivada não muda de
sinal. Apenas a curvatura muda de sinal.

OBS: Há também pontos de inflexão onde a tangente não é horizontal.

Máximo ou mı́nimo?

Primeira Regra:

Máximo quando y′ é (+) antes de anular-se e (−) depois.
Mı́nimo quando y′ é (−) antes de anular-se e (+) depois.

Exemplos:

1) y = x2 − 5x+ 6 =⇒ y′ = 2x− 5 = 0 =⇒ x =
5

2
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Para x < 5
2
por exemplo 0 =⇒ y′ < 0 =⇒ y ↘

Para x > 5
2
por exemplo 3 =⇒ y′ > 0 =⇒ y ↗

Portanto: y tem mı́nimo em x = 5
2
.

2) y = 1√
1−4x2 ou y = (1− 4x2)−

1
2 = u− 1

2

y′ = −1
2
u− 3

2u′ = −1
2
(1− 4x2)−

3
2 (−8x)

y′ = 4x√
(1−4x2)3

= 0 =⇒ 4x = 0 =⇒ x = 0

Para x < 0 =⇒ y′ < 0 =⇒ y ↘
Para x > 0 =⇒ y′ > 0 =⇒ y ↗
Portanto y tem mı́nimo.

3) y = 1
senx

=⇒ y = 1
u

=⇒ y′ = − 1
u2 · u′

y′ = − 1
sen 2x

· cosx = − cosx
sen 2x

= 0

=⇒ cosx = 0 e x = π
2
ou x = 3π

2

Haverá um máximo ou um mı́nimo:

Para x < π
2
, cos x > 0 =⇒ y′ < 0 =⇒ y ↘

Para x > π
2
, cos x < 0 =⇒ y′ > 0 =⇒ y ↗

=⇒ Temos mı́nimo de y para x = π
2

Para x < 3π
2
, cos x < 0 =⇒ y′ > 0 =⇒ y ↗

Para x > 3π
2
, cos x > 0 =⇒ y′ < 0 =⇒ y ↘

=⇒ Temos máximo de y para x = 3π
2

Segunda Regra:

Teorema 4.4.3. Se para o ponto onde se anula a derivada primeira, a de-
rivada segunda é positiva =⇒ y passa por um mı́nimo. Se a derivada
segunda é negativa =⇒ y passa por um máximo.

y′′ < 0, y passa por um máximo.

y′′ > 0, y passa por um mı́nimo.

Exemplos:

1) y = x2 − 5x+ 6
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y′ = 2x− 5

y′′ = 2 sempre (+) =⇒ Mı́nimo

2) y = sen x

y′ = cosx = 0

{
x = π

2

x = 3π
2

y′′ = − senx

Para x = π
2
, y′′ = − sen π

2
= −1 Máximo

Para x = 3π
2
, y′′ = − sen 3π

2
= +1 Mı́nimo

Pontos de Inflexão

São pontos onde a concavidade da curva muda de sentido (a tangente à curva
atravessa a curva).

Teorema 4.4.4. Quando a derivada segunda se anula em um valor de x e
y′ não muda de sinal, tem-se um ponto de inflexão e vice-versa.

OBS: Se além disso y′ = 0 =⇒ a tangente é horizontal, e se y′ = ∞ =⇒
a tangente é vertical.

Exemplo:

1. y = x3 =⇒ y′ = 3x2 =⇒ y′′ = 6x

y′′ anula-se para x = 0 e como y′ é sempre positiva =⇒ temos um
ponto de inflexão para x = 0.

2. y = sen x =⇒ y′ = cosx =⇒ y′′ = − senx

y′′ = 0 para

{
x = 0, 2π, . . .

x = π, 3π, . . .

Para estes pontos a derivada primeira y′ não muda de sinal =⇒ pontos
de inflexão.

0

1

−1

0

1

−1
π
2

π 3π
2

2π

y = senx

y′ = cosx

y′ =⇒ não muda de sinal
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Aplicações práticas da determinação de máximos e mı́nimos

1) Toma-se uma folha quadrada de papelão, de lado igual a a, para cons-
truir uma caixa de base quadrada e sem tampa. De cada um dos quatro
cantos, corta-se um quadrado de lado x e dobra-se as faixas restantes.

Calcular o valor de x para que o volume seja máximo.

Solução:

Superf́ıcie do fundo vale

S = (a− 2x)2

Volume da caixa V = S · x
V = x(a−2x)2 = x(a2−4ax+4x2)

= 4x3 − 4ax2 + a2x

Anulando a derivada primeira:

V ′ = 12x2 − 8ax+ a2 = 0

a

x

x =
8a±

√
64a2 − 48a2

24
=

8a± 4a

24

=⇒ x1 =
a

2
ou x2 =

a

6
Derivada 2a: V ′′ = 24x− 8a

Para x =
a

2
=⇒ V ′′ = 12a− 8a = 4a =⇒ V é mı́nimo

Para x =
a

6
=⇒ V ′′ = 4a− 8a = −4a =⇒ V é máximo

Notar que para x =
a

2
não há caixa! =⇒ V = 0

2) Deseja-se fabricar uma panela de alumı́nio ciĺındrica por meio de uma
folha metálica de superf́ıcie S. Calcular a relação que deve existir entre
a altura H e o raio R para que o volume seja máximo.

Solução:

Volume V = πR2H (1)

Como H e R são duas variáveis,
devemos expressar o volume em
função de uma só variável.

H

R

Superf́ıcie total: S = πR2 + 2πRH (2)
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onde H =
S − πR2

2πR
(3)

(3) em (1) fica:

V = πR2

(
S − πR2

2πR

)
=

R

2
(S − πR2)

V =
RS

2
− πR3

2
= f(R)

Anulando a derivada:

V ′
R =

S

2
− 3πR2

2
= 0 =⇒

 S = 3πR2

R =
√

S
3π

Substituindo S em (2) fica:

3πR2 = πR2 + 2πRH

2πR2 = 2πRH =⇒ R = H

Máximo ou mı́nimo?? Vamos à V ′′

V ′′
R = −3πR < 0 =⇒ MÁXIMO de volume

3) Deseja-se fabricar uma lata de conserva ciĺındrica com tampa que, para
um volume V dado, tenha o mı́nimo de metal. Determinar a relação
entre o raio e a altura.

OBS: É o problema da panela, com tampa e tendo volume dado.

Solução:

Volume: V = πR2H (1)

Superf́ıcie total: S = 2πR2 + 2πRH (2)

De (1) tiramos: H =
V

πR2

Em (2) fica: S = 2πR2 + 2πR
V

πR2
= 2πR2 +

2V

R
= f(R)

S ′ = 4πR− 2V

R2
= 0

onde:

4πR =
2V

R2
e R =

3

√
V

2π

↓

V = 2πR3
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Igualando com (1) fica:

2πR3 = πR2H =⇒ H = 2R

Máximo ou mı́nimo?

S ′′ = 4π − 2V (−2R−3) = 4π +
4V

R3

sempre positivo =⇒ MÍNIMO de superf́ıcie.

4) Seja um pedestal de altura h sobre o qual está colocada uma estátua
de altura a. A que distância do pé do pedestal deve alguém colocar-se
para ver a estátua sob o ângulo máximo?

h

a

γ

α
θ

P A

x

Haverá uma distância AP = x
para a qual o ângulo α é máximo,
o mesmo ocorrendo para tgα.

tgα = tg (θ − γ) =
tg θ − tg γ

1 + tg θ · tg γ
(1)

Mas tg θ =
a+ h

x
e tg γ =

h

x

Substituindo em (1) fica:

tgα =
a+h
x
− h

x

1 + a+h
x
· h
x

=
x(a+ h)− xh

x2 + h(a+ h)

↓

y =
ax

x2 + ah+ h2

y′ =
a(x2 + ah+ h2)− ax(2x)

(x2 + ah+ h2)2
= 0

=⇒ x2 + ah+ h2 − 2x2 = 0

x =
√

h(a+ h) x é a média geométrica entre a altura do pedestal e a

altura total.

Máximo ou mı́nimo? Estudemos o sinal da derivada no entorno do
valor cŕıtico.

Para x <
√

h(a+ h), por exemplo x = 0 =⇒ y′ é (+) =⇒ y ↗ =⇒
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MÁXIMO de tgα e portanto MÁXIMO de α.

Para x >
√
h(a+ h) =⇒ y′ é (−).

5) Um paciente recebe soro glicosado de um recipiente cônico, a uma taxa
constante de 0,5 ml/min. Com que rapidez o ńıvel de soro está baixando
quando sua profundidade for igual a 8 cm?
Verifique que o ńıvel baixa cada vez mais rapidamente à medida que a
profundidade diminui.

y

x

6 cm

8 cm

20 cm

V = volume do soro (em ml) no
instante t
x = raio da sup. do soro (cm) em
t
y = altura da sup. do soro (cm)
em t

V = V (t)

dV

dt
= −0,5ml/min

V =
π

3
x2y com

x

y
=

6

20
=⇒ x =

3y

10

V =
3π

100
y3

Derivando em relação a t temos:

dV

dt
=

9π

100
y2

dy

dt

Sendo
dV

dt
= −0,5 ml/min = −0,5 cm3/min e y = 8 cm

dy

dt
= − 25

288π
≈ −0,276cm/min

De modo geral tem-se:

dy

dt
= − 50

9πy2
< 0[

dy

dt

]
→∞ quando y → 0

Se, por outro lado, eu desejasse saber a taxa de crescimento do raio da
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superf́ıcie do soro:

x

y
=

6

20
=⇒ y =

10

3
x

V =
π

3
· 10
3
· x3 =

10π

9
x3

dV

dt
=

10π

3
· 3x2 · dx

dt

− 0,5 =
10π

3
· x2 · dx

dt

dx

dt
= −0,05

x2
cm/min

6) A concentração de um fármaco no sangue, após sua administração por
via IM, em uma única dose, é dada por:

y = c(t) =
10t

t2 + 2t+ 1
, t ≥ 0

onde t é o tempo em horas. Determine os intervalos onde a concentração
da substância no sangue está aumentando e onde está diminuindo.

Solução:

y = c(t) =
10t

t2 + 2t+ 1
, t ≥ 0

y′ = c′(t) =
10(t+ 1)2 − (10t) · 2(t+ 1)

(t+ 1)4

=
10(t+ 1)[t+ 1− 2t]

(t+ 1)4

=
10(1− t)

(t+ 1)3
, t ≥ 0

y′ > 0 quando t < 1 (sempre t ≥ 0)

y′ < 0 quando t > 1

y tem máximo para t = 1
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1

2,5

t

y

4.4.2 Estudo da Variação das Funções. Traçado das
Curvas

Seja

y = f(x)

Poderemos ver:

• se a função é (+) ou (−);

• se a função cresce ou decresce e com que rapidez;

• se a função é nula ou infinita;

• se a função tem máximo ou mı́nimo.

Procedimento:

1o) Faz-se x = 0, calculando-se y.

2o) Faz-se x = ±∞, calculando-se y.

Se a fração obtida para y for ∞
∞ =⇒ dividir pela maior potência de x

tanto o numerador quanto o denominador.

3o) Faz-se y = 0, deduzindo-se x.

4o) Faz-se y =∞ e deduz-se x.

5o) Calcula-se y′ e simplifica-se.

6o) Anula-se y′.

7o) Estudar sinal de y′ para concluir sobre máximo ou mı́nimo.
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8o) Se necessário calcula-se y′′ (máximo ou mı́nimo: y′′(+) =⇒ mı́nimo e
vice-versa).

Fazendo y′′ = 0 encontrar os pontos de inflexão.

9o) Desenhar quadro para variações.

10o) Traçar curva.

Exemplos:

1) Trinômio do 2o grau.

y = x2 − 5x+ 6

para x = 0 −→ y = +6

x = ±∞ −→ y = +∞
y = 0 para x2 − 5x+ 6 = 0 donde x = +2 ou x = +3.

y′ = 2x− 5 anula-se para x =
5

2
y′′ = +2 =⇒ mı́nimo de y.

Para x < 5
2
, y′ < 0 =⇒ y ↘

Para x > 5
2
, y′ > 0 =⇒ y ↗

O valor do mı́nimo é:

y =
(
5
2

)2 − 5 · 5
2
+ 6 = −1

4

x −∞ 0 2 5
2 3 +∞

y′ +∞ − − − 0 + + +∞
y +∞ ↘ 6 ↘ 0 ↘ − 1

4 ↗ 0 ↗ +∞

5
2

− 1
4 2 3

x

y

2) Seja y =
1

x
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Para x = 0 y =∞
Para x = ±∞ y → 0

y′ = − 1

x2
= 0

Se x = ±∞ =⇒ y′ → 0

Se x = 0 =⇒ y′ =∞ =⇒ y tende à vertical

y′ é sempre < 0 =⇒ y decresce sempre

x −∞ 0 +∞
y′ 0 − ∞ − 0

y 0 ↘ −∞ | +∞ ↘ 0

0
x

y

3) y =
2x− 1

4x+ 2

Para x = 0 y = −1
2

Para x = ±∞

{
y = ∞

∞ = ? =⇒ Fazer

y = 1
2

y =
2x
x
− 1

x
4x
x
+ 2

x

=
2− 1

x

4 + 2
x

lim
x→∞

y =
1

2

y = 0 para 2x− 1 = 0 =⇒ x =
1

2

y =∞ para 4x+ 2 = 0 =⇒ x = −1

2

y′ =
2 · (4x+ 2)− (2x− 1) · 4

(4x+ 2)2
=

��8x + 4−��8x + 4

(4x+ 2)2
=

8

(4x+ 2)2

y′ =
8

(4x+ 2)2
= 0 IMPOSSÍVEL =⇒ Não há máximo nem mı́nimo
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y′ é sempre positivo =⇒ y cresce sempre

x −∞ − 1
2 0 + 1

2 +∞
y′ + + + + + +

y 1
2 ↗ +∞ | −∞ ↗ −1

2 ↗ 0 ↗ + 1
2

− 1
2

1
2

− 1
2

1
2

x

y

4) y =
2x

1 + x2

Para x = 0 =⇒ y = 0

Para x = ±∞ =⇒ y = ∞
∞ indeterminação

Fazer y =
2
x

1
x2 +

x2

x2

=
2
x

1
x2 + 1

lim
x→∞

y = 0

y = 0 para 2x = 0 donde x = 0

y =∞ para 1 + x2 = 0 donde x2 = −1 (imposśıvel)

y′ =
2(1 + x2)− 2x(2x)

(1 + x2)2
=

2 + 2x2 − 4x2

(1 + x2)2
=

2− 2x2

(1 + x2)2
= 0 donde

x = ±1
A derivada tem o sinal de: −2x2 + 2,

trinômio que passa por
máximo
ou mı́nimo

=⇒ (+) para − 1 < x < 1
(−) para x < −1 ou x > 1
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Há um mı́nimo para x = −1 e máximo para x = 1

x −∞ −1 0 +1 +∞
y′ − − 0 + 2 + 0 − −
y 0 ↘ −1 ↗ 0 ↗ +1 ↘ 0

Pontos de inflexão (anular y′′):

y′′ =
(−4x) · (1 + x2)2 − (2− 2x2) · 2(1 + x2) · 2x

(1 + x2)4

=
(1 + x2) · (−4x)− 4x · (2− 2x2)

(1 + x2)3 = 0

donde: −4x− 4x3 − 8x+ 8x3 = 0 =⇒ 4x3 − 12x = 0

4x(x2 − 3) = 0 =⇒


x = 0

x = +
√
3

x = −
√
3

−1

1−
√
3

√
3

−1

1

x

y

5) y = x
2
3 =

3
√
x2

Para x = 0 =⇒ y = 0

Para x = ±∞ =⇒ y = +∞

y′ = 2
3
x− 1

3 =
2

3 3
√
x
= 0

Para x = 0 =⇒ y′ =∞; a curva tende à vertical

Para x = ±∞ =⇒ y′ = 0; a curva tende à horizontal
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Para x < 0; y′ < 0 =⇒ y ↘
Para x > 0; y′ > 0 =⇒ y ↗

x −∞ 0 +∞
y′ 0 − ∞ + 0

y +∞ ↘ 0 ↗ +∞

∞ ∞

0
x

y

6) Seja a função y = −2x4 + 3x2 − 5

Para x = 0 =⇒ y = −5
Para x = ±∞ =⇒ y = −∞
y′ = −8x3 + 6x = 2x(3− 4x2) = 0

y′ = 0 =⇒
{

x = 0

3− 4x2 = 0 =⇒ x = ±
√
3
2
(trinômio passa por um máximo)

3− 4x2

x
(−) (+)

(−) (+) (−)

y′ < 0 para −
√
3
2

< x < 0 e x >

+
√
3
2

y′ > 0 para

{
x < −

√
3
2

0 < x <
√
3
2

Para x = ±
√
3
2

=⇒ y = −31
8

x −∞ −
√
3
2 0 +

√
3
2 +∞

y′ + 0 − 0 + 0 −
y −∞ ↗ − 31

8 ↘ −5 ↗ − 31
8 ↘ −∞
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√
3

2
−

√
3
2

− 31
8

−5

x

y

7) y =
1

3
(x+ 1)3(3x− 2)2

Para x = 0 =⇒ y = 4
3

x = −∞ =⇒ y = −∞
x = +∞ =⇒ y = +∞

y = 0 para

{
x+ 1 = 0 =⇒ x = −1
3x− 2 = 0 =⇒ x = 2

3

y′ =
1

�3

[
�3(x+ 1)2 · (3x− 2)2 + (x+ 1)3 · 2(3x− 2) · �3

]
y′ = (3x− 2)(x+ 1)2

[
(3x− 2) + 2(x+ 1)

]
y′ = 5x(3x− 2)(x+ 1)2

y′ = 0 para


x = 0
x = 2

3

x = −1

(
Para x = ±∞
y =∞ =⇒ y vertical

)
Sinal de y′ depende do produto: 5x(3x− 2)

3x− 2
5x

0(−) (+)

2
3

(−) (+)

y′ < 0 para 0 < x < 2
3

y′ > 0 para x < 0 e x > 2
3

x −∞ −1 0 2
3 +∞

y′ ∞ + 0 + 0 − 0 + ∞
y −∞ ↗ 0 ↗ 4

3 ↘ 0 ↗ +∞
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−1

4
3

2
3

x

y

4.4.3 Fórmula de Taylor e Maclaurin

Dada uma função f(x), podemos escrever o valor da função em um ponto
x0 + h se conhecermos o valor f(x0), por meio de potências crescentes de h,
na forma de um polinômio:

f(x) = f(x0 + h) = f(x0) + f ′(x0) · (x− x0) + f ′′(x0) ·
(x− x0)

2

2!

+ f ′′′(x0) ·
(x− x0)

3

3!
+ . . .+ f (n)(x0) ·

(x− x0)
n

n!
+Rn

x0 x0 + h
x

y

f(x0)

f(x0 + h)

h

Demonstração. Suponhamos que f(x) seja diferenciável no intervalo [x0, x0+
h] e possui derivadas sucessivas únicas, finitas ou nula em número ilimitado
no intervalo. Admitamos a possibilidade de escrever:

f(x) = A0 + A1(x− x0) + A2(x− x0)
2 + A3(x− x0)

3 + . . .

= An(x− x0)
n + An+1(x− x0)

n+1 + . . .

Vamos derivar sucessivamente:
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f ′(x) = A1 + 2A2(x− x0) + 3A3(x− x0)
2 + 4A4(x− x0)

3 + . . .

f ′′(x) = 2A2 + 2 · 3 · A3(x− x0) + 3 · 4 · A4(x− x0)
2 + . . .

f ′′′(x) = 2 · 3 · A3 + 2 · 3 · 4 · A4(x− x0) + . . .

f (4)(x) = 2 · 3 · 4 · A4 + 2 · 3 · 4 · 5 · A5(x− x0) + . . .

...

f (n)(x) = 2·3·. . .·(n−2)·(n−1)·n·An+2·3·. . .·(n−1)·n·(n+1)·An+1(x−x0)+. . .

⇓ Fazendo x = x0

f(x0) = A0, f
′(x0) = A1, f

′′(x0) = 2 · A2

f ′′′(x0) = 2 · 3 · A3 . . . f (n)(x0) = n! · An

OBS: Quando x0 designamos fórmula de Maclaurin.

Exemplos de aplicações:

Seja desenvolver em série de potências a função:

a) f(x) = senx em torno de x = 0

f(x) = senx

f ′(x) = cos x

f ′′(x) = − senx

f ′′′(x) = − cosx

f (4)(x) = senx

f (5)(x) = cos x

f(0) = sen 0 = 0

f ′(0) = cos 0 = 1

f ′′(0) = − sen 0 = 0

f ′′′(0) = − cos 0 = −1
f (4)(0) = sen 0 = 0

f (5)(0) = cos 0 = 1

...

f(x) = senx = 0 + x · 1 + x2

2!
· 0 + x3

3!
· (−1) + x4

4!
· 0 + x5

5!
· 1 + . . .

senx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . =

n∑
i=1

(−1)n+1 x2n−1

(2n− 1)!

b) f(x) = cos x em torno de 0

f(x) = cos x

f ′(x) = − senx

f ′′(x) = − cosx

f ′′′(x) = senx

f (4)(x) = cos x

f(0) = 1

f ′(0) = 0

f ′′(0) = −1
f ′′′(0) = 0

f (4)(0) = 1
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...

f(x) = cos x = 1 + x · 0 + x2

2!
· (−1) + x3

3!
· 0 + x4

4!
· 1 + . . .

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . =

n∑
i=1

(−1)n+1 x2n−2

(2n− 2)!
, n = 1, 2, 3, . . .

c) f(x) = ex na vizinhança de x = 0

f(x) = ex

f ′(x) = ex

f ′′(x) = ex

...

f (n)(x) = ex

f(0) = 1

f ′(0) = 1

f ′′(0) = 1

...

f (n)(0) = 1

f(x) = ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ . . .

d) Dedução das fórmulas de Euler :

eiθ = cos θ + i · sen θ ; e−iθ = cos θ − i · sen θ com i =
√
−1

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ . . .

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
− θ6

6!
− iθ7

7!
+ . . .

=⇒ eiθ = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . .︸ ︷︷ ︸

cos θ

+i

θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . .︸ ︷︷ ︸

sen θ


eiθ = cos θ + i · sen θ
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Substituindo θ por −θ vem:

e−iθ = 1− (−θ)2

2!
+

(−θ)4

4!
− (−θ)6

6!
+ . . .+ i

(
−θ − (−θ)3

3!
+

(−θ)5

5!
− . . .

)
= 1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . .+ i

(
−θ + θ3

3!
− θ5

5!
+

θ7

7!
− θ9

9!
+ . . .

)

= 1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . .︸ ︷︷ ︸

cosx

−i

θ − θ3

3!
+

θ5

5!
− θ7

7!
+

θ9

9!
− . . .︸ ︷︷ ︸

senx



=⇒ e−iθ = cos θ − i · sen θ

Fórmula do erro do desenvolvimento em Série de Taylor:

Taylor Rn =
hn+1

(n+ 1)!
f (n+1)(a+ δh)

Maclaurin Rn =
xn+1

(n+ 1)!
f (n+1)(δx)

Exemplos:

1) Achar o valor de sen 31o com erro menor que 0,00001 conhecidos os
valores de sen 30o e cos 30o.

2) (Interpolação linear ⇔ dois primeiros termos da Série de Taylor)

As temperaturas de um paciente, em um dado dia, foram anotadas de 3
em 3 horas, obtendo-se os dados da tabela. Estabeleça uma estimativa
para a temperatura às 20 horas.

3) O crescimento de uma cultura de bactérias é representado pela equação
Q(t) = 500 +

√
t+ 1 + 4t2, onde t expressa o tempo médio em horas.

Estimar o aumento na população Q no intervalo compreendido entre
8h e 8h15min.
Qual o erro máximo cometido por essa estimativa? Pede-se para usar
a diferencial da função no ponto t = 8.
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4) Estimar a área da superf́ıcie corporal de uma criança pesando 4,3 kg,
utilizando o polinômio de Taylor de ordem três. Avaliar o erro cometido
e comparar a estimativa obtida pelo polinômio com o valor da função

s = 0,11x
2
3

s = superf́ıcie e x = peso.
OBS: Começar com x = 8 .

Exerćıcio: Acumulação de uma substância para fins terepêuticos, após repe-
tidas doses.
Super difusão instantânea.
Concentração oscilará entre as doses.
Sendo k o coeficiente de eliminação da droga.
Intuito é manter a concentração entre os ńıveis de toxicidade e o mı́nimo
aceitável.

Cc < c(t) < Cp

Qual o intervalo t0 entre as administrações para que Cc < c(t) < Cp?

4.5 Exerćıcios

1) Determine as derivadas das funções abaixo, usando a definição

y′ = f ′(x) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
h→0

f(x0 + h)− f(x0)

h

a) x2

Solução:

y′ = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

��x
2 + 2hx+ h2 −��x

2

h

= lim
h→0

��h(2x+ h)

��h
= 2x

b) y = x2 − x+ 1

Solução:

y′ = lim
h→0

(x+ h)2 − (x+ h) + 1− (x2 − x+ 1)

h

= lim
h→0

��x
2 + 2xh+ h2 −�x − h+ �1−��x

2 +�x − �1

h

= lim
h→0

��h(2x+ h− 1)

��h
= 2x− 1
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c) y = ax2 + bx+ c

Solução:

y′ = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)

h

= lim
h→0

��ax2 + 2axh+ ah2 +��bx + bh+ �c−��ax2 −��bx − �c

h

= lim
h→0

��h(2ax+ ah+ b)

��h
= 2ax+ b

d) y = x3

Solução:

y′ = lim
h→0

(x+ h)3 − x3

h
= lim

h→0

��x
3 + 3hx2 + 3h2x+ h3 −��x

3

h

= lim
h→0

��h(3x2 + 3hx+ h2)

��h
= 3x2

e) y = x3 − 2x+ 1

Solução:

y′ = lim
h→0

(x+ h)3 − 2(x+ h) + 1− (x3 − 2x+ 1)

h

= lim
h→0

��x
3 + 3x2h+ 3xh2 + h3 −��2x − 2h+ �1−��x

3 +��2x − �1

h

= lim
h→0

��h(3x2 + 3xh+ h2 − 2)

��h
= 3x2 − 2

f) y =
1

x
Solução:

y′ = lim
h→0

1
x+h
− 1

x

h
= lim

h→0

�x−�x−h
x(x+h)

h
= lim

h→0

−��h

��hx(x+ h)

= lim
h→0

−1
x2 + xh

= − 1

x2

g) y =
√
x

Solução:

y′ = lim
h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x
= lim

h→0

�x + h−�x

h(
√
x+ h+

√
x)

= lim
h→0

��h

��h(
√
x+ h+

√
h)

=
1

2
√
h
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h) g(t) =
1

1 + t
Solução:

y′ = lim
h→0

1
1+t+h

− 1
1+t

h
= lim

h→0

�1+�t−�1−�t−h
(1+t)(1+t+h)

h

= lim
h→0

−��h

��h(1 + t)(1 + t+ h)
= − 1

(1 + t)2

i) g(t) =
1

1− t
Solução:

y′ = lim
h→0

1
1−t−h

− 1
1−t

h
= lim

h→0

�1−�t−�1+�t+h
(1−t)(1−t−h)

h

= lim
h→0

��h

��h(1− t)(1− t− h)
=

1

(1− t)2

j) y =
1

x2

Solução:

y′ = lim
h→0

1
(x+h)2

− 1
x2

h
= lim

h→0

��x
2 −��x

2 − 2hx− h2

hx2(x2 + 2hx+ h2)

= lim
h→0

−��h(2x+ h)

��hx2(x2 + 2hx+ h2)
= lim

h→0

−2x− h

x2(x2 + 2hx+ h2)

=
−2x
x2(x2)

= −2x

x4
= − 2

x3

k) y = c, c = constante

Solução:

y′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

= lim
h→0

f(x+ h)− f(x)

h

=⇒ y′ =
c− c

h
= 0

l) y =
√
x+ 1
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Solução:

y′ = lim
h→0

√
x+ h+ 1−

√
x+ 1

h

= lim
h→0

√
x+ h+ 1−

√
x+ 1

h
·
√
x+ h+ 1 +

√
x+ 1√

x+ h+ 1 +
√
x+ 1

= lim
h→0

�x + h+ �1−�x − �1

h(
√
x+ h+ 1 +

√
x+ 1)

= lim
h→0

��h

��h(
√
x+ h+ 1 +

√
x+ 1)

=
1

2
√
x+ 1

m) y =
1√
x

Solução:

y′ = lim
h→0

1√
x+h
− 1√

x

h
= lim

h→0

√
x−

√
x+h√

x+h·
√
x

h

= lim
h→0

√
x−
√
x+ h

h
√
x+ h ·

√
x
·
√
x+
√
x+ h

√
x+
√
x+ h

= lim
h→0

x− (x+ h)

h
[
x
√
x+ h+ (x+ h)

√
x
] = lim

h→0

−��h

��h
[
x
√
x+ h+ (x+ h)

√
x
]

=
−1

x
√
x+ x

√
x
= − 1

2x
√
x
= − 1

2
√
x3

= −1

2
x− 3

2

2) Usando a regra da cadeia, encontre as derivadas das funções abaixo:

a) y = e(x
2+1)

Solução:

y = f
(
u(x)

)
, onde f(u) = eu ;

u(x) = x2 + 1

=⇒ y′ = f ′(u) · u′(x)

=⇒ y′ = e(x
2+1) · 2x = 2xe(x

2+1)

b) y = e senx

Solução:

y = eu ; u = sen x

y′ = eu · u′
x =⇒ y′ = e senx · cosx
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c) y = ln( sen 2x)

Solução:

y = ln(u) ; u = v2

v = sen x

y′x = y′u · u′
v · v′x

y′ =
1

u
· 2v · cosx

y′ =
1

sen 2x
· 2 senx · cosx =

2���senx · cosx
sen �2x

y′ =
2 cosx

senx
= 2 cotg x

d) y = e(cosx+1)

Solução:

y = eu ; u = cosx+ 1

y′ = eu · u′ = ecosx+1 · (− senx)

y′ = −e(cosx+1) · senx

e) y =
1

u2
; u = 1 + x3

Solução:

y′ = − 2

u3
· 2u · 3x2

y′ = − 2

(1 + x3)3
· 2(1 + x3) · 3x2

y′ = −12x2
�����(1 + x3)

(1 + x3)�32
= − 12x2

(1 + x3)2

f) y =
u+ 1

u− 1
; u = e2x



4.5. EXERCÍCIOS 153

Solução:

v = u+ 1 ; t = u− 1

y =
v

t
=⇒ y′ =

v′ · t− v · t′

t2

y′ =
2e2x(e2x − 1)− (e2x + 1)2e2x

(e2x − 1)2

y′ =
2e2x

[
(e2x − 1)− (e2x + 1)

]
(e2x − 1)2

y′ =
2e2x(��e2x −�

�e2x − 1− 1)

(e2x − 1)2

y′ = − 4e2x

(e2x − 1)2

g) y = sen
(
cos(1 + x3)

)
Solução:

y = u
(
v
(
t(x)

))
u = sen v u′

v = cos v

v = cos t v′t = − sen t

t = 1 + x3 t′x = 3x2

y′ = u′
v · v′t · t′x

y′ = cos
(
cos(1 + x3)

)
·
(
− sen (1 + x3)

)
· 3x2

= −3x2 · cos
(
cos(1 + x3)

)
· sen (1 + x3)

h) y =
√

1 +
√
1 + x2
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Solução:

y = u
(
v
(
t(x)

))
u =
√
v ; u′

v =
1

2
√
x

v = 1 +
√
t ; v′t =

1

2
√
t

t = 1 + x2 ; t′x = 2x

y′ = u′
v · v′t · t′x =⇒ y′ =

1

2
√
v
· 1

2
√
t
· 2x

y′ =
1

2
√

1 +
√
1 + x2

· 1

2
√
1 + x2

· 2x

y′ =
x

2
√

1 +
√
1 + x2 ·

√
1 + x2

3) Considerando y = f(x), use a diferenciação impĺıcita para calcular
dy

dx
,

onde:

a) xy = 1

Solução:

1 · y + x · y′ = 0

y′ = −y

x

b) x2y + xy2 = 10

Solução:

2x · y + x2 · y′ + 1 · y2 + x · 2y · y′ = 0

x2y′ + 2xyy′ = −2xy − y2

y′(x2 + 2xy) = −2xy − y2

y′ = −2xy + y2

x2 + 2xy

c) x3 + xy − y3 = 1
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Solução:

3x2 + 1 · y + x · y′ − 3y2 · y′ = 0

xy′ − 3y2y′ = −3x2 − y

y′(x− 3y2) = −(3x2 + y)

y′ = −3x2 + y

x− 3y2

d) 2xy − y2 = y + x

Solução:

2y + 2x · y′ − 2y · y′ = y′ + 1

2xy′ − 2yy′ − y′ = 1− 2y

y′(2x− 2y − 1) = 1− 2y

y′ =
1− 2y

2x− 2y − 1

e) y = (x+ 1)3(x− 1)2

Solução:

y′ = 3(x+ 1)2(x− 1)2 + (x+ 1)32(x− 1)

y′ = 3(x+ 1)2(x− 1)2 + 2(x+ 1)3(x− 1)

y′ = (x+ 1)2(x− 1)
[
3(x− 1) + 2(x+ 1)

]
y′ = (x+ 1)2(x− 1)(5x− 1)

f) y = x2y2

Solução:

y′ = 2x · y2 + x2 · 2yy′

y′ = 2xy2 + 2x2yy′

y′ − 2x2yy′ = 2xy2

y′(1− 2x2y) = 2xy2

y′ = − 2xy2

2x2y − 1

g) ey · x2 = 1

Solução:

ey · y′ · x2 + ey · 2x = 0

y′ = −2�x��ey

x�2��ey
= −2

x
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h) y =

√
x2 + 1

x
Solução:

y′ =

1

�2
√
x2+1
· �2x · x−

√
x2 + 1 · 1

x2

y′ =

x2
√
x2+1
−
√
x2 + 1

x2
=

x2 − (x2 + 1)

x2
√
x2 + 1

y′ = − 1

x2
√
x2 + 1

i) x3 + xy = y

Solução:

3x2 + y + xy′ = y′

y′(1− x) = 3x2 + y

y′ =
3x2 + y

1− x

j)
x2 − xy

xy
= 1

Solução:

(2x− y − xy′)xy − (x2 − xy)(y + xy′)

x2y2
= 0

2x2y − xy2 − x2yy′ − x2y − x3y′ + xy2 + x2yy′ = 0

x3y′ = x2y

y′ =
y

x

k)
√

x2 + y2 = y

Solução:

1

2
√

x2 + y2
· (2x+ 2yy′) = y′

�2(x+ 2yy′) = �2y
√
x2 + y2

2yy′ = y
√

x2 + y2 − x

y′ =
y
√

x2 + y2 − x

2y
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l) (xy − 2)(x+ y) = 125

Solução:

(y + xy′)(x+ y) + (xy − 2)(1 + y′) = 0

xy + x2y′ + y2 + xyy′ + xy + xyy′ − 2− 2y′ = 0

x2y′ + 2xyy′ − 2y′ = 2− y2 − 2xy

y′(x2 + 2xy − 2) = 2− y2 − 2xy

y′ =
2− y2 − 2xy

x2 + 2xy − 2

m) exy2 = 1

Solução:

exy2 + ex · 2y · y′ = 0

2yexy′ = −exy2

y′ = −��exy�2

2�y��e
x

y′ = −y

2

4.6 Prinćıpio de Fermat

“Um raio de luz ao se propagar de um ponto a outro, tomará sempre o
caminho que demande o menor tempo”.

L =

∫
u ds

u : ı́ndice de refração do meio

ds : variação infinitesimal do raio ao longo da trajetória

Num raio homogêneo e isotrópico, o caminho óptico vale L = n · s pois
n é constante.
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Reflexão:

BA

b2b1

a− xx

a

r1 =
√
b21 + x2

r2 =
√

b21 + (a− x)2

L = n · s = n(

s︷ ︸︸ ︷
r1 + r2)

dL

dx
= n

(
dr1
dx

+
dr2
dx

)


dr1
dx

=
2x

2
√

b21 + x2

dr2
dx

=
−2(a− x)

2
√

b22 + (a− x)2

Caminho mı́nimo:
dL

dx
= 0

n

(
x√

b21 + x2
− a− x√

b22 + (a− x)2

)
= 0

x√
b21 + x2

=
a− x√

b22 + (a− x)2

Mas:
x√

b21 + x2
= sen θi ;

a− x√
b22 + (a− x)2

= sen θr

=⇒ sen θi = sen θr =⇒ θi = θr
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Refração:

r1

r2

A

B

b2

b1

a− x

x

a

n1

n2

θi

θr

L1 = n1r1

L2 = n2r2

Prinćıpio de Fermat

dL

dx
= 0 =⇒ dL

dx
=

d

dx
(n1r1 + n2r2)

{
r1 =

√
b21 + x2

r2 =
√

b21 + (a− x)2
=⇒


dr1
dx

=
�2x

�2
√

b21 + x2

dr2
dx

=
−2(a− x)

2
√

b22 + (a− x)2

=⇒ dL

dx
= n1

dr1
dx

+ n2
dr2
dx

= 0

dL

dx
= n1

x√
b21 + x2

− n2
a− x√

b22 + (a− x)2

=⇒ n1

sen θi︷ ︸︸ ︷
x√

b21 + x2
−n2

sen θr︷ ︸︸ ︷
a− x√

b22 + (a− x)2
= 0

=⇒ n1 sen θi = n2 sen θr
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sen θi
sen θr

=
n2

n1

Lei de Snell

4.7 Movimento Browniano

Pelo prinćıpio da equipartição da energia, part́ıculas num dado sistema em
equiĺıbrio, apresentam a mesma energia cinética média. Para uma certa
direção, na ausência de forças externas, podemos escrever:

1

2
m

(
dx

dt

)2

=
1

2
kT .

m: massa da part́ıcula

dx

dt
: velocidade da part́ıcula numa dada direção

k: constante de Boltzmann

T : temperatura absoluta

Dáı, conclúımos que part́ıculas com menor massa, apresentam maior veloci-
dade média.

O movimento Browniano é observado para part́ıculas diminutas em meio
ĺıquido, cujas dimensões ainda permitam visualização, por microscopia óptica
de campo escuro, por exemplo. Este efeito, como mostrado pela fórmula da
energia cinética média acima, é cada vez mais ńıtido quanto menores (ou seja
com menos massa) forem as part́ıculas.

O movimento médio de uma part́ıcula, a partir de uma origem num dado
eixo, após o tempo t é dado pela equação de Einstein:

x̄ =
√
2Dt

D: coeficiente de difusão

t: tempo decorrido

O coeficiente de difusão de uma part́ıcula em suspensão, é definida pela lei
de difusão de Einstein, como:

Df = kT ; onde f é denominado coeficiente friccional.

Para part́ıculas esféricas podemos escrever:

D =
kT

f
=

kT

6πηa
=

RT

6πηaNA

⇒ x̄ =

√
2× RT

6πηaNA

× t

⇒ x̄ =

√
RTt

3πηaNA

R: constante dos gases

π: 3,1416

η: coeficiente de viscosidade

a: raio da part́ıcula

NA: número de Avogrado



4.7. MOVIMENTO BROWNIANO 161

Exerćıcios:

1) Calcular o deslocamento médio devido ao movimento Browniano após
1 minuto, ao longo de um eixo, para uma part́ıcula esférica de raio
0,1µm suspensa em água a 25oC. Dado: coeficiente de viscosidade da
água nesta temperatura é 8,9× 10−4 kg·m−1·s−1.

Solução:

x̄ =

√
RTt

3πηaNA

=

√
8,31451J ·mol−1 × 298K× 60s

3× 3,1416× 89× 10−4kg ·m−1 · s−1 × 0,1× 10−6m× 6,01× 1023

⇒ x̄ =

√
148663,439× 1011

504,961× 1013

⇒ x̄ =
√

294,405× 10−12

⇒ x̄ = 17,2× 10−6m

x̄ = 17,2µm

2) Seja um meio aquoso estacionário, no qual ocorre a difusão linear livre
de um soluto cujo coeficiente de difusão é 2,32 × 10−5 cm2/s. Num
ponto de abcissa 0,22 cm, a concentração do soluto e 0,035 mol·L−1 e
num ponto de abcissa 0,23 cm, a concentração é 0,032 mol·L−1. Qual
a quantidade aproximada de soluto que atravessa por segundo uma
superf́ıcie de área 1,5 cm2, perpendicular à direção de difusão? Dados:

1a lei de Fick:
dm

dt
= −D × A× dC

dx
,

sendo m: massa; D: coeficiente de difusão; A: área; c: concentração
do soluto.

Solução:

dc

dx
≈ 0,032− 0,035

0,23− 0,22
= −0,3 mol·L−1·cm−1 = −0,3× 10−3 mol/cm4

⇒ dm

dt
= −2,32× 10−5 × 1,5× (−0,3× 10−3) = 1,04× 10−8 mol·s−1
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Deduções para: (1) equação do deslocamento browniano médio e (2) lei da
difusão de Einstein. Para ambas as deduções, utilizaremos a 1a lei de Fick
da difusão, que afirma: a massa dm de substância que difunde na direção x,
no tempo t, através da área A, é proporcional ao gradiente de concentração
dc/dx relativo ao plano em questão.

dm

dt
= −DA

dc

dx
⇔ dm = −DA

dc

dx
dt (∗)1

sinal (−): difusão se processa da região de maior concentração para a de
menor concentração.
m: massa
D: coeficiente de difusão
A: área relacionada com a difusão
c: concentração (massa/volume)

(1) Equação do deslocamento Browniano

c1

c2
Área A no
plano de
referência

c1 > c2

x̄
x̄

Para x̄ pequeno, podemos escrever, para a massa de part́ıculas desloca-
das da esquerda para a direita (corresponde a 1/3 do no total de part́ıculas
deslocadas) através de A (área unitária neste caso).

(∗)2 m =
(c1 − c2)x̄

2

×x

×x
=

(c1 − c2)x̄
2

2x̄
, onde

c1 − c2
x̄

≈ dc

dx
para x̄ pequeno

⇒ (∗)3 m = −1

2

dc

dx
x̄2

Da 1a lei de Fick, (∗)1 considerando a área A, unitária, fica:

(∗)4 m = −D dc

dx
dt .

Combinando (∗)3 com (∗)4 fica: −1

2 �
�
�A
A
A

dc

dx
x̄2 = −D

�
�
�A
A
A

dc

dx
dt

⇒ x̄2 = 2D dt ⇒ x̄ =
√
2D dt
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(2) Lei de difusão de Einstein

A primeira lei de Fick afirma:

dm = −DA
dc

dx
dt ⇔ dm

dt
= −DA

dc

dx
(∗)1

Adicionalmente, podemos concluir que o trabalho
para inovar uma part́ıcula numa distância “dx”,
contra uma resistência de fricção “f”, corresponde
à variação de potencial qúımico dµ, sendo:

dµ = K T d(ln c)

⇒ f
dx

dt︸︷︷︸
Força

×dx

︸ ︷︷ ︸
Trabalho

= K T d(ln c)

m: massa
D: coeficiente de

difusão
A: área
c: concentração
f : coeficiente

funcional
T : temperatura

absoluta
K: constante de

Boltzmann

Esta equação diferencial pode ser reorganizada como:

dx

dt
=

KT

f

d(ln c)

dx
; como c é função de x, a equação fica:

dx

dt
=

KT

f
× 1

c

dc

dx
⇒ dx

dt
=

KT

f c

dc

dx
(∗)2

Podemos escrever a massa difundida através de A, no tempo dt, como:

⇒ −dm

dt
= Ac

dx

dt
(∗)3 −dm = Ac dx︸ ︷︷ ︸

massa

Área massa/volume

Usando (∗)1 e (∗)3, obtemos:

D��A
dc

dx
= ��A c

dx

dt
⇒ c

dx

dt
= D

dc

dx
(∗)4

Usando (∗)2 em (∗)4, obtemos finalmente:

D
�
�
�dc

dx
= Ac

KT

fAc �
�
�dc

dx
⇒ Df = K T

4.8 Cortes ultrafinos

Muitas análises de cortes ultrafinos no interior do microscópio eletrônico de
transmissão, dependem da medida precisa da espessura do corte analisado. A
espessura t pode ser obtida a partir das projeções da distância de dois objetos
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pontuais em faces opostas do corte, em imagens obtidas de projeções do corte
em duas direções. Na figura, A e B são dois pontos em faces opostas do corte.
Duas direções de projeção são apresentadas (uma ortogonal e outra segundo
o ângulo θ em relação à vertical; t a variável do problema, corresponde à
espessura do corte. No problema real, o feixe eletrônico é mantido fixo, e o
objeto gira em torno do eixo do goniômetro, onde se insere o porta-objeto.

Avaliação da precisão do cálculo de espessuras de cortes para ob-
servação por microscopia eletrônica de transmissão, usando projeções
com ângulos de inclinação diferentes.
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A

B

A′

B′

θ

θ

Projeção 1

(corte na horizontal)

Projeção 2 com

inclinação θ

A e B: dois obje-
tos pontuais como por
exemplo na part́ıcula
de ouro coloidal.

A′B′: paralaxe (di-
ferença algébrica en-
tre as distâncias entre
dois pontos nas duas
projeções).

A′B′ = p = Mt sen θ (∗)1

⇒ t =
p

M sen θ
dt

dθ
=

d

dθ

( p

M sen θ

)
= − p cos θ

M sen 2θ
; para θ pequeno, temos:

dt

dθ
≈ − p

Mθ2
usando (∗)1≈ −

ZZMt��θ

ZZMθ�2

⇒ dt

dθ
= − t

θ
⇒
∣∣∣∣dtt
∣∣∣∣ = ∣∣∣∣dθθ

∣∣∣∣
⇒ A precisão da medida da espessura, depende da precisão da medida an-
gular.

Caso de inclinações simétricas em relação à horizontal

θ/2

θ/2

(∗)2 p = 2Mt sen

(
θ

2

)
⇒ t =

p

2M sen
(
θ
2

)
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dt

d
(
θ
2

) =
d

d
(
θ
2

) ( p

2M sen
(
θ
2

)) ⇒ dt

d
(
θ
2

) = −
p cos

(
θ
2

)
2M sen2

(
θ
2

) ;
Para θ/2 pequeno, usando (∗)2 temos:

dt

d
(
θ
2

) = −
HHH2Mt

�
�
(
θ
2

)
HHH2M

(
θ
2

)
�2

⇒
∣∣∣∣dtt
∣∣∣∣ =

∣∣∣∣∣d
(
θ
2

)
θ
2

∣∣∣∣∣



Caṕıtulo 5

Integrais

Seja calcular a área sob o gráfico de y = x2 aproximando a região por
retângulos:

a1
a2

ai

área

h
n

2h
n

(i−1)h
n

ih
n

nh
n

x

y

Dividimos o intervalo fechado [0, h] em n pequenos intervalos de igual
comprimento, usando os pontos:

0 ,
h

n
,
2h

n
, . . . ,

(i− 1)h

n
,
ih

n
, . . . ,

(n− 1)h

n
,
nh

n

=⇒
Sequência de

intervalos fechados

[
0, h

n

]
,
[
h
n
, 2h

n

]
, . . . ,

[
(i−1)h

n
, ih
n

]
, . . . ,

[
(n−1)h

n
, nh

n

]
Cada retângulo usando a altura com a ordenada da direita.

Área do i-ésimo intervalo: ai =

(
ih

n

)2

· h
n
=

h3i2

n3

167
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Área total: An =
n∑

i=1

ai =
n∑

i=1

h3i2

n3
=

h3

n3

n∑
i=1

i2

OBS:
n∑

i=1

i2 =
n

6
(n+ 1)(2n+ 1)

An =
h3

n3
· n
6
(n+ 1)(2n+ 1) =

h3

6n2

[
n

(
1 +

1

n

)][
2n

(
1 +

1

2n

)]
=

h3

3

(
1 +

1

n

)(
1 +

1

2n

)

Quando n→∞ =⇒ lim
n→∞

An =
h3

3
.

O mesmo problema aproximando “por baixo”.

a′2

a′i

a′n

h
n

2h
n

3h
n

(i−1)h
n

ih
n

nh
n

= h
x

y

Dividimos o intervalo [0, h] da mesma forma mas a altura do i-ésimo
retângulo é a ordenada da esquerda.

a′i =

[
(i− 1)h

n

]2 ∆x︷ ︸︸ ︷
h

n
=

h3

n3
(i− 1)2

Área total: A′
n =

n∑
i=1

a′i =
n∑

i=1

h3

n3
(i− 1)2 =

h3

n3

n−1∑
i=1

i2
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Pois A′
n =

h3

n3

[n
6
(n+ 1)(2n+ 1)− n2

]
= An −

�
�
���
0

h3

n
no limite.

lim
n→∞

A′
n =

h3

3
∆x→ 0 =⇒ dx

Teorema 5.0.1. Seja R = {(x, y) | 0 ≤ x ≤ h e 0 ≤ y ≤ x2}. Então a área

de R é
h3

3
.

Teorema 5.0.2. Seja R = {(x, y) | 0 ≤ x ≤ h e 0 ≤ y ≤ kx2} com k > 0.

Então a área de R é
kh3

3
.

Em geral, para a < b seja∫ b

a

kx2 dx (Integral definida),

a área da região sob o gráfico de y = kx2 de x = a até b. Então

Teorema 5.0.3.

∫ b

a

kx2 dx =
k

3
(b3 − a3)

a b x

y

De forma geral dizemos que a área entre a curva e o eixo das abcissas
vale:

A =

∫ b

a

f(x) dx



170 CAPÍTULO 5. INTEGRAIS

a c d b

+

−

+

x

y

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ d

c

f(x) dx+

∫ b

d

f(x) dx

5.1 Propriedades da Integral definida

1) Se c é uma constante:

∫ b

a

c · f(x) dx = c ·
∫ b

a

f(x) dx

2) Se y1 = f(x) e y2 = g(x) são cont́ınuas em [a, b], então:

∫ b

a

[
f(x) + g(x)

]
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

3) Se y = f(x) é cont́ınua em [a, b] e c é tal que a ≤ c ≤ b, então

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx
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4) Se y1 = f(x) e y2 = g(x) são cont́ınuas em [a, b] e f(x) ≥ g(x) para
todo x em [a, b], então

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx

5) Se f(x) é cont́ınua em [a, b] e m e M são os valores mı́nimo e máximo
de f neste intervalo, isto é, m ≤ f(x) ≤M , então:

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a)

M

m

a b

f(x)

x

y

6)

Teorema 5.1.1. Teorema do valor médio para integrais.

Se y = f(x) é uma função cont́ınua em [a, b], então existe um número
c satisfazendo a ≤ c ≤ b tal que∫ b

a

f(x) dx = f(c)(b− a)
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f(c)

a bc

y = f(x)

x

y

Demonstração.

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a)

m ≤

∫ b

a

f(x) dx

b− a
≤M∫ b

a

f(x) dx

b− a
= f(c) =⇒

∫ b

a

f(x) dx = f(c) · (b− a)

7)

Teorema 5.1.2. Teorema Fundamental do Cálculo Integral

Seja y = f(x) cont́ınua em [a, b] e

F (x) =

∫ x

a

f(t) dt para a ≤ t ≤ x ≤ b

Então

a) F ′(x) = f(x), para todo x em (a, b).

b) Se y = G(x) é qualquer função tal que G′(x) = f(x) em (a, b),
tem-se: ∫ b

a

f(x) dx = G(b)−G(a)
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Demonstração. a:

Na figura abaixo, y = F (x) =

∫ x

a

f(t) dt representa a área entre o

gráfico, o intervalo [a, x] e as retas t = a e t = x.

a x b

f(t)
y = F (x)

t

∆F = F (x+∆x)− F (x) =

∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt

=

∫ x

a

f(t) dt+

∫ x+∆x

x

f(t) dt−
∫ x

a

f(t) dt =

∫ x+∆x

x

f(t) dt

Pela propriedade 6 temos

∆F =

∫ x+∆x

x

f(t) dt = f(ϵ)
[
(x+∆x)− x

]
= f(ϵ)∆x

para x < ϵ < x+∆x . Então:

∆F

∆x
=

f(ϵ)∆x

∆x
= f(ϵ)

=⇒ F ′(x) = lim
∆x→0

∆F

∆x
= lim

∆x→0
f(ϵ) = f(x)
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Demonstração. b:

Pelo item anterior

F (x) =

∫ x

a

f(t) dt

F ′(x) = f(x) em (a, b)

Se y = G(x) goza da propriedade G′(x) = f(x), então

F (x)−G(x) = Cte (constante)

Logo
F (a)−G(a) = Cte =⇒ C = −G(a)

pois F (a) = 0 (pela integral).∫ x

a

f(t) dt = G(x) + C

=⇒
∫ x

a

f(t) dt = G(x)−G(a)

Fazendo x = b fica ∫ b

a

f(t) dt = G(b)−G(a)

Podemos escrever também:∫ b

a

f(t) dt = G(x)
∣∣∣b
a
= G(b)−G(a)

Portanto, temos agora um método para calcular a integral de qualquer
função cont́ınua em [a, b]. Basta conhecer a primitiva de f , ou seja: G
tal que G′(x) = f(x) para todo x em (a, b).

5.2 Técnicas de Integração

5.2.1 Integração por substituição ou mudança de variável.

Seja F (x) = f
(
g(x)

)
, pela regra da cadeia temos:

F ′(x) =
[
f
(
g(x)

)]′
= f ′(g(x)) · g′(x)
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Segundo o teorema fundamental do Cálculo Integral:∫
d

dx

[
f
(
g(x)

)]
dx = f

(
g(x)

)
+ c

Fazendo y = g(x), temos∫
f ′( g(x)︸︷︷︸

y

)
· g′(x) dx︸ ︷︷ ︸

dy

=

∫
f ′(y) dy = f(y) + c = f

(
g(x)

)
+ c

Exerćıcios

1) Encontre uma primitiva para f(x) = (2x+ 1)1999

Solução: Fazer y = 2x+ 1 =⇒ dy

dx
= 2 ou dy = 2dx; dx =

dy

2

∫
(2x+ 1)1999 dx =

∫
y1999

dy

2
=

1

2

∫
y1999 dy

=
1

2

y2000

2000
+ c =

(2x+ 1)2000

4000
+ c

2) Calcule:

∫ 2

0

(2x+ 1) dx√
2x2 + 2x+ 3

Solução: Fazer y = 2x2 + 2x+ 3

dy = (4x+ 2) dx =⇒ dy = 2(2x+ 1) dx =⇒ (2x+ 1) dx =
dy

2
.

∫ 2

0

(2x+ 1) dx√
2x2 + 2x+ 3

=

∫ 15

3

dy

2
√
y
=
√
y
∣∣∣15
3

=
√
15−

√
3

y(0) = 3; y(2) = 15

3)

∫
(3x3 + 2x4) dx =

{
3x4

4
+

2x5

5
+ c

}

4)

∫
(αx3y + βx2y2) dβ =

{
αx3yβ +

β2x2y2

2
+ c

}
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5)

∫ [
cos(x2 + 1)

]
2x dx

u = x2 + 1

du = 2xdx∫ [
cos(x2 + 1)

]
2x dx =

∫
cosu du = senu+ c = { sen (x2 + 1) + c}

6)

∫
ex

2+1 · 2x dx

u = x2 + 1 =⇒ du

dx
= 2x =⇒ du = 2xdx∫

ex
2+1 · 2x dx =

∫
eu du = {eu + c} =

{
ex

2+1 + c
}

7)

∫
sen (t2 + 1)2t dt =

∫
senu du = {− cosu+ c} = {− cos(t2 + 1) + c}

u = t2 + 1; du = 2t dt

8)

∫
(x2 + 1)7x dx =

1

2

∫
u7 du =

{
1

2

u8

8
+ c

}
=

{
(x2 + 1)8

16
+ c

}
u = x2 + 1

du = 2x dx =⇒ x dx =
du

2

9)

∫
cos
√
x√

x
dx (x > 0)

u =
√
x

du =
1

2
√
x
dx =⇒ 1√

x
dx = 2du∫

cos
√
x√

x
dx = 2

∫
cosu du = 2 { senu+ c} = 2 { sen

√
x+ c}

10)

∫
ecosx senx dx = −

∫
eu du = {−eu + c} = {−ecosx + c}

u = cosx

du = − senx dx

11)

∫
(x2 + 1)2 dx =

∫
(x4 + 2x2 + 1) dx =

{
x5

5
+

2x3

3
+ x+ c

}
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12)

∫
(1 + x2)3x dx =

1

2

∫
u3 du =

{
1

2
· u

4

4
+ c

}
=

{
1

8
(1 + x2)4 + c

}
u = 1 + x2

du = 2x dx

13)

∫
(x2 + t2)3tx dx =

1

2

∫
u3t du =

t

2

∫
u3 du =

{
t

2
· u

4

4
+ c

}
=

{
t(u2 + t2)4

8
+ c

}

u = x2 + t2

du = 2x dx

14)

∫
(1 +

√
x)3

1√
x
dx = 2

∫
u3 du =

{
2u4

4
+ c

}
=

{
(1 +

√
x)4

2
+ c

}
u = 1 +

√
x

du =
1

2
√
x
dx

15)

∫
(ex + 2)4ex dx =

∫
u4 du =

{
u5

5
+ c

}
=

{
(ex + 2)5

5
+ c

}
u = ex + 2

du = ex dx

16

∫
(1+ tg x)3/2 sec2 x dx =

∫
u3/2 du =

{
2

5
u5/2 + c

}
=

2

5

{
(1 + tg x)5/2 + c

}
u = 1 + tg x

du = sec2 x dx

17)

∫
(ex+e−x)2·(ex−e−x) dx =

∫
u2 du =

{
u3

3
+ c

}
=

{
(ex + e−x)3

3
+ c

}
u = ex + e−x

du = (ex − e−x) dx

18

∫
x

(1 + x2)2
dx =

1

2

∫
du

u2
=

1

2

∫
u−2 du =

{
1

2
(−u−1) + c

}
=

{
1

2

−1
1 + x2

+ c

}
={

−1
2(1 + x2)

+ c

}
u = 1 + x2
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du = 2x dx

19)

∫
x

1 + x2
dx =

1

2

∫
du

u
=

{
1

2
log u+ c

}
u = 1 + x2

du = 2x dx

20)

∫
1

x
· lnx dx =

∫
u du =

{
u2

2
+ c

}
=

{
(lnx)2

2
+ c

}
, x > 0, não

definida para x ≤ 0

u = lnx

du =
1

x
· dx

21)

∫
senx · cosx dx =

∫
u du =

{
u2

2
+ c

}
=

{
1

2
· sen 2x+ c

}
u = sen x

du = cosx dx

22)

∫
sen 2x cosx =

∫
u2 du =

{
u3

3
+ c

}
=

{
sen 3x

3
+ c

}
u = sen x

du = cosx dx

23)

∫
cos2 x senx dx = −

∫
u2 du =

{
−u3

3
+ c

}
=

{
−cos3x

3
+ c

}
u = cosx

du = − senx dx

24

∫
tg 2θ dθ = {−θ + tg θ + c}

OBS: y = tg θ

y′ = 1 + tg 2θ =⇒
∫

tg 2θ dθ = −
∫
dθ +

∫
dy

25)

∫
sen θ

cos θ
dθ = −

∫
du

u2
=

{
1

u
+ c

}
=

{
1

cos θ
+ c

}
u = cos θ

du = − sen θ dθ
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26)

∫
(2 sen 2θ−1) dθ = 2

∫
sen 2θ dθ−

∫
dθ = A2

∫
(1− cos 2θ)

A2
dθ−

∫
dθ =∫

dθ −
∫

cos 2θ dθ −
∫

dθ =

{
− sen 2θ

2
+ c

}
OBS: cos 2θ = 1− sen 2θ

27)

∫
(lnx)3

x
dx =

∫
u3 dx =

{
u4

4
+ c

}
=

{
(lnx)4

4

}
u = lnx

du =
1

x
· dx

5.2.2 Integração por partes

Sejam duas funções diferenciáveis u e v.

d(uv) = u dv + v du

Integrando ambos os membros:∫
d(uv) =

∫
u dv +

∫
v du

Pelo Teorema Fundamental do Cálculo:

uv + C =

∫
u dv +

∫
v du

∫
u dv = uv −

∫
v du+ C

Ex. Calcule:

1)

∫
xe2x dx = x

e2x

2
−
∫

e2x

2
dx =

{
xe2x

2
− e2x

4
+ c

}
u = x =⇒ du = dx

dv = e2x dx =⇒ v =
e2x

2

2)

∫
x cosx dx = x senx−

∫
senx dx = {x senx+ cosx+ c}

u = x; du = dx

dv = cosx dx; v = sen x
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3)

∫
lnx dx = x lnx−

∫
x · 1

x
dx = {x lnx− x+ C}

u = lnx; du =
1

x
dx

dv = dx; v = x

4)

∫
ln2 x dx = x ln2 x−

∫
Zx · 2 lnx ·

1

Zx
dx = x ln2 x− 2

∫
lnx dx

=
{
x ln2 x− 2x lnx+ 2x+ C

}
u = ln2 x; du = 2 ln x

1

x
dx

dv = dx; v = x

5)

∫
x sen ax dx = −x cos ax

a
+

∫
cos ax

a
dx =

{
−x cos ax

a
+

sen ax

a2
+ c
}

=

{(
−x
a

)
cos ax+

(
1

a2

)
sen ax+ c

}
u = x; du = dx

dv = sen ax; v = −cos ax

a

6)

∫
eax cos(bx) dx = eax · sen bx

b
− a

b

∫
eax sen bx dx

u = eax; du = aeax dx

dv = cos bx dx; v =
sen bx

b

(∗)
∫

eax sen bx dx = −eax cos bx
b

+
a

b

∫
eax cos bx dx

U = eax; dU = aeax

dV = sen bx dx; V = −cos bx

b
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Voltando na expressão inicial:∫
eax cos bx dx = eax

sen bx

b
− a

b

[
−eax cos bx

b
+

a

b

∫
eax cos bx dx

]
= eax

sen bx

b
+

aeax cos bx

b2
− a2

b2

∫
eax cos bx dx

∫
eax cos bx dx

[
1 +

a2

b2

]
=

eax sen bx

b
+

aeax cos bx

b2∫
eax cos bx dx =

��b2

a2 + b2

[
beax sen bx+ aeax cos bx

��b2

]
∫

eax cos bx dx =

{(
1

a2 + b2

)
· eax · [b sen bx+ a cos bx] + C

}

7)

∫
x2 senx dx = −x2 cosx+ 2

∫
x cosx dx

u = x2; du = 2x dx

dv = sen x dx; v = − cosx

2

∫
x cosx dx = 2

{
x senx−

∫
senx dx

}
= 2 {x senx+ cosx+ C}

U = x; dU = dx

dV = cosx dx; V = sen x

=⇒
∫

x2 senx dx = −x2 cosx+ 2x senx+ 2 cosx+ C

8)

∫
x2ex dx = x2ex − 2

∫
xex dx

u = x2; du = 2x dx

dv = ex dx; v = ex

2

∫
xex dx = 2

{
xex −

∫
ex dx

}
= 2xex − 2ex + C

U = x; dU = dx

dV = ex dx; V = ex

=⇒
∫

x2ex dx = x2ex − 2xex + 2ex + C
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9)

∫
x2 ln2 x dx =

x3 ln2 x

3
−
∫

xA3
2

3
· 2 lnx 1

Zx 1

dx

u = lnx; du = 2 ln x · 1
x
· dx

dv = x2 dx; v =
x3

3

2

3

∫
x2 lnx dx =

2

3

(
x3

3
· lnx−

∫
xA3

2

3
· 1

Zx 1

dx

)

U = lnx; dU =
1

x
dx

dV = x2 dx; V =
x3

3

=⇒
∫

x2 ln2 x dx =
x3 ln2 x

3
− 2

3

(
x3 lnx

3
− 1

3

∫
x2 dx

)
∫

x2 ln2 x dx =
x3

3
ln2 x− 2x3

9
lnx+

2

27
x3 + C

Ex. Calcule as integrais:

1)

∫ π

0

dx

cos2
(
x
5

)
= 5

∫ π/5

0

du

cos2(u)

= 5

∫ π/5

0

sec2(u) du

u = x
5

x = 0 ⇒ u = 0
↗
↘

x = π ⇒ u = π
5

du = dx
5
⇒ dx = 5du

= 5 tg (u)
∣∣∣0
π/5

= 5 tg
(
π
5

)
− 5��

��*
0

tg (0)

= 5 tg
(
π
5

)

2)

∫ π/4

π/8

cotg 2(2x) dx
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= 1
2

∫ π/2

π/4

cotg 2(u) du

= 1
2
[− cotg u− u]

∣∣∣π/2
π/4

u = 2x

x = π
8
⇒ u = π

4

↗
↘

x = π
4
⇒ u = π

2

du = 2dx ⇒ dx = du
2

= 1
2

[(
− cotg π

2
− π

2

)
−
(
− cotg π

4
− π

4

)]
= 1

2

[(
0− π

2

)
−
(
−1− π

4

)]
= −π

4
+ 1

2
+ π

8
= −2π+4+π

8

= 4−π
8

3) Encontre os números A e B tais que a função f(x) = A·2x+B satisfaça

as condições f ′(1) = 2;
∫ 3

0
f(x) dx = 7.

Solução:

f ′(x) = A · 2x · ln 2

f ′(1) = A · A2 · ln 2 = A2 =⇒ A =
1

ln 2∫ 3

0

f(x) dx =

∫ 3

0

(A · 2x +B) dx =

∫ 3

0

(
1

ln 2
· 2x +B

)
dx

=⇒ 1

ln 2

∫ 3

0

2x dx+

∫ 3

0

B dx = 7

=⇒ 1

ln 2
· 2

x

ln 2

∣∣∣∣∣
3

0

+Bx
∣∣∣3
0
= 7

8

ln2 2
− 1

ln2 2
+ 3B = 7

8− 1 + 3B ln2 2 = 7 ln2 2

7 + 3B ln2 2 = 7 ln2 2

B =
7(ln2 2− 1)

3 ln2 2

4) Encontre α > 0 para que a desigualdade
∫ α

−α
ex dx > 3/2 seja verda-

deira.

Solução:∫ α

−α

ex dx = eα − e−α
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eα − e−α >
3

2

eα − 1

eα
>

3

2
;

fazer y = eα

Obs.: y > 0

=⇒ y − 1

y
>

3

2

y − 1

y
− 3

2
> 0

y2 − 1− 3

2
y > 0

Resolver: y2 − 3

2
y − 1 = 0

y =

3
2
±
√

9
4
+ 4

2

y =

3
2
±
√

25
4

2

y =
3
2
± 5

2

2

y1 =
8
2

2
= 8

4
= 2

↗
↘

y2 =
− 2

2

2
=

�
�@
@
−2

4

y1 = 2 =⇒ 2 = eα =⇒ α = ln 2

Voltando à inequação: α > ln 2

5.2.3 Método das Frações Parciais

Seja F (x) = f(x)
g(x)

, uma fração racional. Caso o grau do polinômio f(x) seja

menor do que o de g(x), dizemos que F (x) é uma fração racional própria.
Caso contrário, F (x) será uma fração racional imprópria. Neste segundo
caso, F (x) poderá ser representada como a soma de um polinômio com uma
fração racional própria.

Exemplo:
x5

x4 + 1
= x− x

x4 + 1

Uma fração racional própria pode ser expressa como soma de “frações
parciais”, cujos denominadores são da forma (ax + b)n ou (ax2 + bx + c)n,
com n um inteiro positivo. Considerando a natureza dos fatores do polinômio
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do denominador, estudaremos os seguintes casos:

1o caso: A cada fator do tipo ax+b que aparece uma vez no denominador de
uma fração racional própria, corresponderá uma fração parcial do tipo A

ax+b
,

onde A é uma constante a ser determinada.

Exemplo 1: Encontrar

∫
dx

x2 − 4

Solução:

x2 − 4 = (x− 2)(x+ 2)

1

x2 − 4
=

A

x− 2
+

B

x+ 2
⇒ 1 = A(x+ 2) +B(x− 2)

⇒ 1 = (A+B)x+ (2A− 2B)
A+B = 0 ⇒ B = −A

2A− 2B = 1 ⇒ 2A+ 2A = 1 ⇒ A =
1

4

⇒ B = −1

4

1

x2 − 4
=

1
4

x− 2
+
−1

4

x+ 2

⇒
∫

dx

x2 − 4
=

1

4

∫
dx

x− 2
− 1

4

∫
dx

x+ 2

=
1

4
ln(x− 2)− 1

4
ln(x+ 2) + c

Exemplo 2: Calcular

∫
5x− 2

x2 − 4
dx

Solução:

5x− 2

(x− 2)(x+ 2)
=

A

x− 2
+

B

x+ 2

⇒ 5x− 2 = A(x+ 2) +B(x− 2)

5x− 2 = (A+B)x+ (2A− 2B)

⇒ A+B = 5 ⇒ A = 5−B (∗)

�2A− �2B = −�2 ⇒ A = B − 1

⇒ 5−B = B − 1 ⇒ 2B = 6 ⇒ B = 3
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(∗)A = 5− 3 ⇒ A = 2

⇒
∫

5x− 2

x2 − 4
dx =

∫
2

x− 2
dx+

∫
3

x+ 2
dx∫

5x− 2

x2 − 4
dx = {2 ln |x− 2|+ 3 ln |x+ 2|+ c}

Exerćıcio: Calcular

∫
x− 1

x2 − 4
dx

2o caso: Quando o polinômio do denominador da função racional própria
pode ser decomposta em fatores lineares do tipo ax+ b, aparecendo n vezes.
Neste caso, podemos escrever:

A1

ax+ b
+

A2

(ax+ b)2
+ . . .+

An

(ax+ b)n
,

com A1, A2, . . ., An, constantes a serem determinadas.

Exemplo 1: Encontrar

∫
3x+ 5

x3 − x2 − x+ 1
dx

Solução:

Fatorando o denominador, temos:

x3 − x2 − x+ 1 = (x+ 1)(x− 1)2

⇒ 3x+ 5

x3 − x2 − x+ 1
=

A

x+ 1
+

B

x− 1
+

C

(x− 1)2

⇒ 3x+ 5 = A(x2 − 2x+ 1) +B(x2 − 1) + C(x+ 1)

3x+ 5 = Ax2 − 2Ax+ A+Bx2 −B + Cx+ C

= (A+B)x2 + (C − 2A)x+ A−B + C


A+B = 0 ⇒ B = −A
−2A+ C = 3 ⇒ C = 3 + 2A
A−B + C = 5 ⇒ A− (−A) + (3 + 2A) = 5

⇒ 4A = 2 ⇒ A =
1

2

⇒ B = −1

2
; C = 3 + 2× 1

2
= 4
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∫
3x+ 5

x3 − x2 − x+ 1
dx =

1

2

∫
dx

x+ 1
− 1

2

∫
dx

x− 1
+ 4

∫
dx

(x− 1)2

=
1

2
ln(x+ 1)− 1

2
ln(x− 1)− 4

x− 1
+ c

Exemplo 2: Encontrar

∫
x− 1

(x− 2)3
dx

Solução:

x− 1

(x− 2)3
=

A

x− 2
+

B

(x− 2)2
+

C

(x− 2)3

⇒ x− 1 = A(x− 2)2 +B(x− 2) + C (∗)
Fazendo x = 1 temos:

2− 1 = C ⇒ C = 1

Derivando a expressão (∗) e fazendo x = 2 novamente, temos:

−1 = 2A(x− 2) +B

⇒ −1 = 2A× 0 +B ⇒ B = −1
Derivando novamente, temos:

0 = 2A ⇒ A = 0

⇒
∫

x− 1

(x− 2)3
dx = −

∫
dx

(x− 2)2
+

∫
dx

(x− 2)3

=

{
1

x− 2
− 1

2(x− 2)2
+ c

}

3o caso:Quando o polinômio do denominador de uma fração racional própria
pode ser decomposto em fatores lineares e quadráticos, tendo estes últimos
multiplicidade um, a cada fator do 2o grau irredut́ıvel, corresponderá uma
fração racional própria do tipo:

Ax+B

ax2 + bx+ c
, com A e B constantes a serem determinadas.

Exemplo 1: Encontre

∫
dx

x3 + x
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Solução:

Fatorando o denominador, temos:

x3 + x = x2(x+ 1)

⇒ 1

x3 + x
=

A

x
+

Bx+ C

x2 + 1

⇒ 1 = Ax2 + A+Bx2 + Cx

⇒ 1 = (A+B)x2 + Cx+ A

A+B = 0

C = 0

A = 1 ⇒ B = −1

⇒
∫

dx

x3 + x
=

∫
dx

x
−
∫

x dx

x2 + 1

=

{
ln |x| − 1

2
ln |x2 + 1|+ c

}

Exemplo 2: Encontre

∫
x2 + 2

x3 − 1
dx

Solução:

x3 − 1 = (x− 1)(x2 + x+ 1)

x2 + 2

x3 − 1
=

A

x− 1
+

Bx+ C

x2 + x+ 1

x2 + 2 = A(x2 + x+ 1) + (Bx+ C)(x− 1)

= (A+B)x2 + (A−B + C)x+ (A− C)

Resolvendo o sistema: A+B = 1

A−B + C = 0

A− C = 2

temos: A = 1; B = 0; C = −1

⇒
∫

x2 + 2

x3 − 1
dx =

∫
A

x− 1
dx+

∫
Bx+ C

x2 + x+ 1
dx

=

∫
dx

x− 1
−
∫

dx

x2 + x+ 1
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⇒
∫

x2 + 2

x3 − 1
dx = ln |x− 1| −

∫
dx

x2 + x+ 1

OBS.: Complementando o quadrado:

Todo polinômio quadrático ax2+bx+c, pode ser escrito como a
[
(x−p)2+r

]
.

Fazendo para o denominador da segunda integral, temos:

x2 + x+ 1 = 1×
[
(x− p)2 + 1

]
Por comparação temos:

x2 + x+ 1 = x2 − 2px+ p2 + r = x2 − 2px+ (p2 + r)

1 = −2p ⇒ p = −1

2

1 = p2 + r ⇒ 1 =
1

4
+ r ⇒ r =

3

4

⇒ x2 + x+ 1 =

(
x+

1

2

)2

+
3

4

⇒
∫

x2 + 2

x3 − 1
dx =

∫
dx

x− 1
−
∫

dx

(x+ 1)2 + 3
4

OBS.: Agora, devemos transformar o denominador da segunda integral rea-
lizando a substituição:

u =
x− p

q
(ou x = qu+ p) , onde q2 = r .

A substituição transformará o denominador em:

aq2(u2 + 1) .

No caso geral, a integral ficaria:∫
R(x)

Q(x)
dx =

∫
R(qu+ p)

aq2(u2 + 1)
d(qu+ p)

= A

∫
u du

u2 + 1
+B

∫
du

u2 + 1

=
1

2
A ln(u2 + 1) +B arctg (u2 + 1) + C

No caso particular do problema, R(x) = 1, então, temos:∫
dx(

x+ 1
2

)2
+ 3

4

, pela transformação fica:
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∫ d
(√

3
4
u− 1

2

)
1× 3

4
(u2 + 1)

=
4

3

∫ √
3
4
du

u2 + 1

=
4

3
×
√

3

4

∫
du

u2 + 1
=

2
√
3

3
arctg u+ c

⇒
∫

x2 + 2

x3 − 1
dx = ln(x− 1)− 2

√
3

3
arctg

x+ 1
2√

3
4

+ c

= ln(x− 1)− 2
√
3

3
arctg

2x+ 1√
3

+ c

a = 1

p = −1

2

q2 = r =
3

4

q =

√
3

4

x =

√
3

4
u− 1

2

dx =

√
3

4
du

5.3 Cálculo da área do ćırculo

P (x, y)

y

x

R

A região hachurada corresponde a 1/4 da
área total A, sendo: R o raio da cir-
cunferência; x e y as abcissas e ordena-
das, respectivamente, dos pontos da cir-
cunferência, com y = f(x).
Então, podemos escrever:

A = 4

∫ R

0

f(x) dx = 4

∫ R

0

√
r2 − x2 dx .

Neste tipo de integral fazemos a substituição trigo-
nométrica x = R sen θ, o que leva à nova expressão:

A = 4

∫ √
R2 − (R sen θ)2 ·R cos θ dθ

Os novos limites da integração serão:

Para x = 0 ⇒ 0 = R sen θ ⇒ θ = 0

Para x = R ⇒ R = R sen θ ⇒ θ =
π

2

Considerando
um triângulo
do tipo:

θ

x

y

R

x = R sen θ
dx = R cos θdθ
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⇒ A = 4

∫ π
2

0

√
R2 −R2 sen 2θ ·R cos θ dθ

= 4

∫ π
2

0

R
√
1− sen 2θR cos θ dθ

= 4R2

∫ π
2

0

√
1− sen 2θ cos θ dθ

= 4R2

∫ π
2

0

cos2 θ dθ

Utilizando a relação conhecida: cos2 θ = 1+cos 2θ
2

, fica:

A = 4R2

∫ π
2

0

1 + cos 2θ

2
dθ = 4R2

∫ π
2

0

(
1

2
+

cos 2θ

2

)
dθ

Pelo Teorema Fundamental do Cálculo, temos:

A = 4R2

(
θ

2
+

sen 2θ

4

) ∣∣∣∣π2
0

= 4R2
(π
4
+ 0
)
= πR2

5.4 Áreas em coordenadas polares

eixo de

referência0

β

B

rk

A

α
θ

∆θ

P (r, θ)

Q(r +∆r, θ +∆θ)

A área AOB pode ser considerada como a soma de setores circulares com
intervalos angulares:

∆θ =
β − α

n
,

com n um número inteiro representando o número de subdivisões do intervalo
total β − α.
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Então, a área total AOB será a soma das áreas elementares dA = 1
2
r2 dθ.

Este somatório fica:

A =

β∑
θ=α

1

2
r2k ∆θ = lim

∆θ → 0
(n→∞)

β∑
θ=α

1

2

[
f(θk)

]2
∆θ

=
1

2

∫ β

α

[
f(θ)

]2
dθ

=⇒ A =
1

2

∫ β

α

r2 dθ

OBS: dA =
1

2
r dθ︸︷︷︸
arco

× r︸︷︷︸
raio

=
1

2
r2 dθ; A =

∫
dA

Exemplo: Área do ćırculo de raio R:

A = 2×
∫ π

0

1

2
R2 dθ = �2×

1

�2
R2 ×

∫ π

0

dθ

= R2 × π = πR2

Exemplo: Determinar a área interior ao ćırculo com raio R.

θ

dA =
1

2
r2 dθ

A =

∫ 2π

0

1

2
R2 dθ =

1

2
R2

∫ 2π

0

dθ

⇒ A =
1

�2
R2

�2π = πR2

ou
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R

r
θ

dS

r dθ dA = r dθ dr

dA = r dr dθ

A =

∫ R

0

r dr

∫ 2π

0

dθ

=
R2

�2
· �2π = πR2

OBS:

∆θ
∆S

∆S

∆θ
= r ⇒ ∆S = r∆θ

Exemplo: Aproximação do volume de sangue que flui por segundo através de
uma seção transversal de um vaso de grande calibre.

Solução:

A lei de Poiseuille (1842) para o fluxo laminar num tubo ciĺındrico afirma:

v = k(R2 − r2) cm/s

Neste problema, vamos aproximar
o sangue por um fluido homogêneo
pois os elementos figurados do san-
gue têm diâmetro ≪ diâmetro do
vaso.

dθ

r dθ

dr

V = volume
segundos

= v ×A

dA = r dθdr

seção transversal do vaso

v: velocidade do fluxo;

k: constante dependente de vários
fatores tais como: comprimento do
vaso, diferença de pressão entre
os extremos, viscosidade do fluido,
etc.;

R: raio do vaso;

r: distância do centro da seção cir-
cular até um ponto deste plano que
secciona o vaso;

V : volume do sangue;

A: área da seção transversal do
vaso.
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dV = k(R2 − r2)r dθdr; V : volume/seg

V =

∫ 2π

0

dθ

∫ R

0

k(R2 − r2)r dr = 2π

[∫ R

0

kR2r dr −
∫ R

0

kr3 dr

]
= 2π

[
kR2

(
r2

2

) ∣∣∣∣R
0

− k
r4

4

∣∣∣∣R
0

]
= 2π

(
kR4

2
− kR4

4

)

=
2πkR4

4
cm3/s =

πkR4

2
cm3/s

5.5 Exerćıcios

Calcule a integral definida: I =

∫ 1

0

e arcsenx dx

Solução:

• Fazer arcsenx = t ⇒ x = sen t; dx = cos t dt

• Novos limites de integração: para x = 0, t = 0
x = 1, t = π/2

⇒ I =

∫ π/2

0

et cos t dt (∗)1

Integrando por partes, temos:

et = u ; du = et dt

cos t dt = dv ; v = sen t

} ∫
u dv = uv −

∫
v du

⇒ I = [et sen t]
π/2
0 −

∫ π/2

0

sen t et dt (∗)2

Integrando por partes, novamente, temos:

et = u; du = et dt

sen t dt = dv; v = − cos t∫ π/2

0

et sen t dt = [−et cos t]π/20 −
∫ π/2

0

(− cos t)et dt∫ π/2

0

et sen t dt = [−et cos t]π/20 +

∫ π/2

0

et cos t dt︸ ︷︷ ︸
I

(∗)3

De (∗)1, (∗)2 e (∗)3, temos ⇒ I = [et sen t]
π/2
0 − [−et cos t]π/20 − I
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⇒ 2I = [et sen t]
π/2
0 − [−et cos t]π/20

I =
1

2
[et sen t]

π/2
0 − 1

2
[−et cos t]π/20

I =
1

2
eπ/2 − 1

2
=

1

2
(eπ/2 − 1)
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Caṕıtulo 6

Equações Diferenciais

6.1 Equações Diferenciais Ordinárias

Grande parte de fenômenos da natureza, cient́ıficos ou tecnológicos, podem
ser expressos por equações diferenciais.

As equações diferenciais são um tipo de equações que apresentam deriva-
das ou diferenciais de uma dada função.

Exemplo: Seja a equação algébrica x2 + y2 = a, sendo y = f(x) e a uma
constante.

Ao diferenciarmos esta equação em relação a x, obteremos a seguinte
equação diferencial:

(∗) 2x+ 2yy′ = 0 ou x+ yy′ = 0

No presente caṕıtulo, estudaremos alguns tipos de equações diferenciais. Para
isto, é importante classificá-las.

Em particular, quando a equação envolve duas variáveis, sendo posśıvel
ocorrer derivadas em relação a apenas uma delas, denominamos “equação
diferencial ordinária”. Este será o tipo principal tratado no caṕıtulo.

Definições

Equação diferencial ordinária:

É uma relação entre as variáveis x e y, e pelo menos uma das derivadas y′,
y′′, . . ., y(n) de y em relação a x.

F (x, y, y′, y′′, . . . , y(n)) = 0

Ordem da equação diferencial:

197
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É o expoente da maior derivada na relação funcional.

Grau da equação:

É o expoente da maior derivada.

Equação linear:

Equação em que y e todas as derivadas (mas não x) aparecem linearmente.
Pode ser escrita como:

an(x)y
(n) + an−1(x)y

(n−1) + . . .+ a1(x)y = Q(x)

Soluções de uma equação diferencial

Uma solução de uma equação diferencial é uma equação tal que, se as variáveis
as satisfazem, ela e suas diferenciais ou derivadas satisfazem à equação dife-
rencial.

Exemplo: Se c é uma constante,

x2 − xy = c (∗)1
é solução da equação

(2x− y) dx− x dy = 0 (∗)2
pois, diferenciando (∗)1 obtemos (∗)2.
Veja:

2x−
(
y + x

dy

dx

)
= 0

2x− y − x
dy

dx
= 0

2x dx− y dx− x dy = 0

(2x− y) dx− x dy = 0

Então, se x e y variam de tal forma a satisfazer (∗)1, elas e suas diferenciais
satisfazem (∗)2.

Como a constante c pode ter qualquer valor, a equação diferencial tem
infinitas soluções. Plotando x, y no plano cartesiano, cada solução será re-
presentada por uma curva.
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curvas

representando

soluções

de (∗)2

x

y

A primitiva de uma equação diferencial, é uma relação entre variáveis e
n constantes arbitrárias, como por exemplo y = Ax2 +Bx. Ela dará origem
a uma equação diferencial livre de constantes arbitrárias, a partir de n + 1
equações, quais sejam, a própria primitiva e as n equações provenientes de n
derivadas sucessivas da primitiva.

Exerćıcio 1: Classifique as equações ordinárias abaixo.

a) y′′′ + xy′′ + 2y(y′)2 + 3xy = 0

b) y′ = 10 + y

c) dy + (xy − cosx)dx = 0

d) y′′ + 4y = x

e) (y′)2 − y′ + 2y = x2

f)
√
r′ + r = 2 sen θ

g)
d2v

dv2
· dv
dx

+ x

(
dv

dx

)2

+ v = 0
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h) y′′′ + y2 = 2x

Resposta: a) 3a ordem, 1o grau; b) 1a ordem, 1o grau; c) 1a ordem, 1o grau;
d) 2a ordem, 1o grau; e) 1a ordem, 2o grau; f) 1a ordem, 1o grau; g) 2a ordem,
1o grau; h) 3a ordem, 1o grau.

Exerćıcio 2: Verifique que as funções abaixo são soluções das equações dife-
renciais indexadas. Diga se cada solução é solução particular ou primitiva
(solução geral).

a) y =
senx

x
; xy′ + y = cosx

b) y = x
√
1− x2; yy′ = x− 2x3

c) y =
c

cosx
; y′ − tg x · y = 0

d) x2 + y2 = c; yy′ + x = 0

e) y = ex(1− x); y′′ − 2y′ + y = 0

f) y = c1e
x + c2e

−x; y′′ − y = 0

Resposta:

a) y′ =
x cosx− senx

x2

�x ·
x cosx− senx

x�2
+ y = cosx ⇒ x cosx− senx+ xy = x cosx

xy = sen x ⇒ y =
senx

x
solução particular

b) y′ =
√
1− x2 − �2x2

�2
√
1− x2

=
√
1− x2 − x2

√
1− x2

y′ =
(1− x2)− x2

√
1− x2

⇒ y′ =
(1− 2x2)√

1− x2

⇒ y × (1− 2x2)√
1− x2

= x− 2x3

y =
x
√
1− x2 − 2x3

√
1− x2

1− 2x2
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y =
(x− 2x3)

√
1− x2

1− 2x2
=

x�����
(1− 2x2)

√
1− x2

����
1− 2x2

y = x
√
1− x2 solução particular

c) y′ =
c senx

cos2 x
= c

tg x

cosx

⇒ c
tg x

cosx
− y tg x = 0

y���tg x = c�
��tg x

cosx

y =
c

cosx
solução geral

d) y2 = c− x2 ⇒ y =
√
c− x2

y′ =
−�2x

�2
√
c− x2

=
−x√
c− x2

⇒ y × (−x)√
c− x2

+ x = 0

⇒ −�xy +�x
√
c− x2 = 0

⇒ y =
√
c− x2 ⇒ x2 + y2 = c solução geral

e) y′ = ex(1 + x) + ex = ex(2 + x)

y′′ = ex(2 + x) + ex = ex(3 + x)

⇒ ex(3 + x)− 2ex(2 + x) + y = 0

ex(3 + x− 4− 2x) + y = 0

ex(−1− x) + y = 0

y − ex(1 + x) = 0

y = ex(1 + x) solução particular

f) y′ = c1e
x − c2e

−x

y′′ = c1e
x + c2e

−x

⇒ c1e
x + c2e

−x − y = 0

y = c1e
x + c2e

−x solução geral
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6.2 Equações separáveis

Se a equação diferencial tem a forma

f1(x) dx+ f2(y) dy = 0

as variáveis são ditas separadas, e portanto, cada termo é uma diferencial
exata. Neste caso, a equação total tem a forma

du = 0 , onde u =

∫
f1(x) dx+

∫
f2(y) dy ,

o que leva a: u =

∫
f1(x) dx +

∫
f2(y) dy = c, sendo c uma constante

arbitrária.
Caso as variáveis não estejam separadas, não podemos resolver a equação

diferencial, de forma simples, como acima.

Exemplo: x dy + (1− y) dx = 0

Neste caso, nenhum dos termos da equação pode ser integrado diretamente.
Entretanto, dividindo os termos por x(1− y), obteremos as variáveis separa-
das, e a equação fica:

dy

1− y
+

dx

x
= 0, cuja solução será então obtida por integração:∫

dy

1− y
+

∫
dx

x
= ln c

− ln(1− y) + ln x = ln c

ln
x

1− y
= ln c

⇒ x = c(1− y)

OBS: incluimos ln c como
constante, para simplificar os
cálculos, como se pode ver
imediatamente.

A equação diferencial acima se enquadra no caso resumida a seguir:

dy

dx
= f(x)g(y) ⇒ 1

g(y)
dy = f(x) dx

⇒
∫

dy

g(y)
=

∫
f(x) dx

Podemos integrar ambos os membros da igualdade de modo independente.

Exemplos:

1)
dy

dx
+ x(1− y2)1/2 = 0 (1a ordem, 1o grau, separável)
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Solução:

dy

(1− y2)1/2
+ x dx = 0 ⇒

∫
dy√
1− y2︸ ︷︷ ︸

Problema já resolvido

+

∫
x dx = 0

⇒ sen−1y +
1

2
x2 = c

y = sen

(
c− 1

2
x2

)

2) y − ln

(
dy

dx

)
= 0 (1a ordem, 1o grau, separável)

Solução:

y = ln

(
dy

dx

)
⇒ dy

dx
= ey ⇒ e−y dy = dx

⇒
∫

e−y dy =

∫
dx ⇒ −e−y = x− c

⇒ e−y = c− x ⇒ −y = ln(c− x)

y = − ln(c− x)

Exerćıcios:

Resolva as equações.

1) (2x+ 1) dy − 3y dx = 0

Solução: ÷ ambos os termos por y(2x+ 1) fica:

dy

y
− 3 dx

2x+ 1
= 0

ln y − 3

2
ln(2x+ 1) = ln c

ln y − ln(2x+ 1)3/2 = ln c ⇒ ln y√
(2x+ 1)3

= ln c

y√
(2x+ 1)3

= c ⇒ y = c
√

(2x+ 1)3

ou

y2 = c′(2x+ 1)3
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2) (y2 − 1) dx− (2y + xy) dy = 0

Solução: (y2 − 1) dx− y(2 + x) dy = 0

÷ ambos os termos por (y2 − 1)(2 + x) fica:

dx

2 + x
− y dy

y2 − 1
= 0

ln(2 + x)− 1

2
ln(y2 − 1) = ln c

ln
2 + x√
y2 − 1

= ln c ⇒ y2 − 1 = c(2 + x)

3) y dx+ (x+ xy) dy = 0

Solução: y dx+ x(1 + y) dy = 0

÷xy ambos os termos:

dx

x
+

(1 + y) dy

y
= 0

dx

x
+

dy

y
+ dy = 0 ⇒ lnx+ ln y + y = c

⇒ lnxy + y = c

4) x
dy

dx
+ y = y2

Solução: x
dy

dx
= y2 − y ⇒ dy

y(y − 1)
=

dx

x

dx

x
= −dy

y
+

dy

y − 1

dx

x
+

dy

y
− dy

y − 1
= 0

lnx+ ln y − ln(y − 1) = ln c

ln
xy

y − 1
= ln c ⇒ xy = c(y − 1)

1

y(y − 1)
=

A

y
+

B

y − 1

Ay − A+By = 1

(A+B)y − A = 1

A+B = 0 ⇒ A = −B
−A = 1 ⇒ A = −1; B = +1

5) dx−
√
a2 − x2 dy = 0

Solução: ÷ ambos os termos por
√
a2 − x2, fica:

dx√
a2 − x2

− dy = 0

⇒ dx√
a2 − x2

= dy ⇒ arcsen
(x
a

)
= y + c
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x

a
= sen (y + c)

⇒ x = a sen (y + c)

6) ex−y dx+ ey−x dy = 0

Solução:
ex

ey
dx+

ey

ex
dy = 0

× por exey ambos os termos:

⇒ e2x dx+ e2y dy = 0

⇒
�
�
�1

2
ln(e2x) +

�
�
�1

2
ln(e2y) = c

e2x + e2y = c

6.3 Equações homogêneas

Caso em que a função F (x, y) na equação y′ = F (x, y), tem a forma de
f(y/x).

Por exemplo: x
dy

dx
= x+ y ⇒ dy

dx
= 1 +

y

x
,

corresponde a um tipo da equação geral:

dy

dx
= f

(y
x

)
; neste caso, fazer:

y

x
= u ⇒ y = ux

dy

dx
= x

du

dx
+ u ⇒ x

du

dx
+ u = f(u)

Esta última equação é separável, e pode ser escrita na forma:

dx

x
=

du

f(u)− u

⇒ ln |x| =
∫

du

f(u)− u

x
du

dx
+ u = f(u)

x du+u dx = f(u) dx

x du =
(
f(u)− u

)
dx

dx

x
=

du

f(u)− u

Exemplos:

1) x
dy

dx
− 2y + x = 0 (1a ordem, 1o grau, homogênea)
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Fazer: y = ux ⇒ dy

dx
= u+ x

du

dx

⇒ �x

(
u+ x

du

dx

)
− 2u�x +�x = 0

Equação cujas variáveis

podem ser separadas.

u dx+ x du− 2u dx+ dx = 0

x du− u dx+ dx = 0

x du+ (1− u) dx = 0

x du = (u− 1) dx

du

u− 1
=

dx

x

ln(u− 1) = ln x+ ln c

u− 1 = cx
y

x
− 1 = cx

y = x+ cx2

2) x
dy

dx
= x+ y ⇒ ÷x e fazer y = ux

dy

dx
= 1 +

y

x
⇒ d(ux)

dx
= 1 +

u�x

�x

�u + x
du

dx
= 1 +�u ⇒ du =

dx

x
⇒ u = ln |x|+ c

mas y = ux ⇒ y = ux = x{ln |x|+ c}

Exerćıcio: Achar uma curva que passe pelo ponto (0,−2), de modo que a
inclinação da tangente em quaisquer de seus pontos seja igual à ordenada do
ponto, aumentada de 3 unidades.

Solução: Equação diferencial da famı́lia de curvas que satisfazem à condição
dada:

(∗)1
dy

dx
= y + 3

Separando as variáveis e integrando obtemos:

dy

y + 3

Separando as variáveis e integrando obtemos:

dy

y + 3
= dx ⇒ ln(y + 3) = x+ c (∗)2
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Como a curva deve passar por (0,−2), temos:

y
∣∣
x=0

= −2 (∗)3
Fazendo (∗)3 em (∗)2, encontramos o valor de c:

ln | − 2 + 3| = 0 + c ⇒ ln |1| = c ⇒ c = 0

A equação (∗)2 fica:

x = ln |y + 3| ⇒ y + 3 = ex ⇒ y = ex − 3

Exerćıcio: Achar a curva para a qual a inclinação da tangente em qualquer
ponto é n vezes maior que a inclinação da reta que une este ponto com a
origem das coordenadas.

Solução:

α

β

t

dy

dx
= n

y

x
tg β =

dy

dx
dy

y
= n

dx

x
tgα =

y

x

⇒ ln |y| = n ln |x|+ ln c

ln |y| = ln |x|n + ln c

ln |y| = ln
(
c|x|n

)
y = cxn

Exerćıcio: x
dy

dx
+ x+ y = 0

Solução:

dy

dx
+ 1 +

y

x
= 0

dy

dx
= −1− y

x
; fazer u =

y

x
; y = ux

d(ux)

dx
= −1− u

u+ x
du

dx
= −1− u

x
du

dx
= −1− 2u

dx

x
= − du

1 + 2u
⇒ ln |x| = −1

2
ln |1 + 2u|+ lnC
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ln |x| = ln{|1 + 2u|−1/2 · c}

x =
c√

1 + 2u
⇒ x =

c√
1 + 2

y

x

x2
(
1 + 2

y

x

)
= c2 = c′

x2 + 2xy = c′

Exerćıcio:
dy

dx
=

2x+ y

2y − x
; y = ux; u =

y

x

Solução:

u+ x
du

dx
=

2�x + u�x

2u�x −�x

x
du

dx
=

2 + u

2u− 1
− u

x
du

dx
=

2 + u− 2u2 + u

2u− 1

x
du

dx
=

2 + 2u− 2u2

2u− 1

dx

x
=

(2u− 1)

2 + 2u− 2u2
du

dx

x
=

(2u− 1)

2(1 + u− u2)
du

ln |x| = −1

2
× ln |1 + u− u2|+ lnC

ln |x| = ln |1 + u− u2|−1/2 · C

x =
C√

1 + u− u2
⇒ x2 =

C2

(
√
1 + u− u2)2

x2 =
C ′

1 + u− u2
⇒ x2 + ux2 − u2x2 = C ′

x2 +
y

�x
x�2 − y2

��x
2
·��x2 = C ′

x2 + xy − y2 = C ′
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6.4 Equações lineares

Fórmula geral: an(x) y
(n) + an−1(x) y

(n−1) + . . .+ a0(x) y = Q(x)

Equaçõe lineares de primeira ordem podem ser escritas como:

dy

dx
+ f(x) y = g(x)

Para resolver este tipo de equação utilizamos o “fator integrante” que pode
ser obtido como descrito a seguir.

Inicialmente vamos examinar a equação fazendo g(x) = 0. Ao realizarmos
este procedimento, além de linear, a equação se torna separável, podendo ser
integrada como uma equação deste tipo. Então:

(∗) dy

dx
+ f(x) = 0 ⇒ dy

dx
= −f(x) ⇒ dy = −f(x) dx

⇒ ln y = −
∫

f(x) dx+ c

y = Ae−
∫
f(x)dx ⇒ ye

∫
f(x)dx = A

Diferenciando a última equação em relação a x, fica:

d

dx

{
ye

∫
f(x)dx

}
=

dy

dx
· e

∫
f(x)dx + y · e

∫
f(x)dx · f(x) = dA

dx
= 0

⇒
(
dy

dx
+ f(x)y

)
e
∫
f(x)dx = 0

A expressão acima corresponde à equação inicial (∗) multiplicada por
I(x) = e

∫
f(x)dx, o que leva a sua diferencial exata pasśıvel de ser integrada

diretamente. I(x) é denominado “fator integrante”.

Voltando à equação original, podemos escrever, após multiplicarmos am-
bos os membros por I(x):{
dy

dx
+ f(x)y

}
I(x) =

d

dx

(
yI(x)

)
= g(x)I(x)

⇒ yI(x) =

∫
g(x)I(x) dx+ c

dividindo por I(x), obteremos y como função de x.

Exemplo 1:
dy

dx
+ y = e−x

Solução: Fator integrante: I(x) = e
∫
f(x) dx = ex
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⇒ d

dx

[
yI(x)

]
= g(x)I(x)

d

dx
(yex) = e−x · ex = 1 ⇒

∫
d(yex)

dx
=

∫
dx

⇒ yex = x+ c

⇒ y = (x+ c)e−x

Exemplo 2:
dy

dx
+ y = sen x

Solução: Fator integrante: I(x) = e
∫
f(x) dx = ex

d(yex)

dx
= ex senx ⇒ yex =

∫
ex · senx dx+ c (∗)

OBS:

∫
ex · senx dx

Integrando por partes:

u = ex; du = ex dx

dv = sen x dx; v = − cosx

⇒
∫

ex · senx dx = ex(− cosx)−
∫

(− cosx)ex dx∫
ex senx dx = −ex cosx+

∫
ex cosx dx

Integrando por partes novamente

U = ex; dU = ex dx

dV = cosx dx; V = sen x∫
ex senxdx = −ex cosx+ ex senx−

∫
ex senx dx

⇒ 2

∫
ex senx dx = ex( senx− cosx)∫

ex senx dx =
1

2
ex( senx− cosx)

Voltando a (∗), fica:

yex =
1

2
ex( senx− cosx) + c

y =
1

2
( senx− cosx) + ce−x
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Exerćıcios:

1) y′ + f(x)y = g(x); Fator integrante: I = e
∫
f(x)dx

⇒ x2y′ − y = 0

y′ + f(x)y = g(x)

x2y′

x2
− y

x2
=

0

x2

y′ − y

x2
= 0

y′ − 1

x2
y = 0

f(x) = − 1

x2

⇒ I = e
∫
(− 1

x2
)dx

I = e−
x−1

−1 = ex
−1

⇒ multiplicar todos os termos pelo fator integrante I:

y′ · ex−1
+ y · ex−1

(
− 1

x2

)
= 0

f ′ · g + f · g′ = (f · g)′

⇒ d(y · ex−1
)

dx
= 0; d(y · ex−1

) = 0 dx

⇒ y =
C

ex−1 ou y =
c

e1/x

⇒ y = ce−1/x

Outra forma de resolver; utilizando a transformada de Lagrange:

y′ − 1

x2
y = 0

y = e−
∫
f(x)dx

[∫
g(x) e

∫
f(x)dx dx+ c

]
y = e−

∫
(− 1

x2
)dx
[∫

0 · e
∫
(− 1

x2
)dx dx+ c

]
y = e

∫
x−2dx

[∫
0 · dx+ c

]
= e

x−2+1

−2+1 [C + c] = e
x−1

−1 · C

y = Ce−1/x

2) y′ − 3y = 6 OBS: Equação do tipo y′ + f(x)y = g(x){
f(x) = −3
g(x) = 6
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I = e
∫
(−3)dx = e−3x

Multiplicar termos pelo fator integrante I = e−3x

y′ · e−3x + y · e−3x · (−3) = 6e−3x

f ′ · g + f · g′

d(y · e−3x)

dx
= 6e−3x∫

d(y · e−3) = 6

∫
e−3x dx

y · e−3x = 6 · e−3x ·
(
−1

3

)
ye−3x = −2e−3x + c

y = −2e−3x

e−3x
+

c

e−3x

y = −2 + ce3x

6.5 Desintegração radioativa e datação de fósseis

pelo método do carbono-14

Vamos considerar uma população de átomos radioativos de um tipo e que es-
ses átomos têm a mesma chance de desintegração, independente dos átomos
vizinhos. Neste modelo, consideramos que, a taxa de desintegração do con-
junto de átomos é proporcional ao número de átomos presentes em cada
instante.

Equação diferencial do problema:

dN

dt
= −λN

⇒ dN

N
= −λ dt

⇒ ln |N | = −λt+ c

⇒ N = e−λt+c

⇒ N(t) = N0e
−λt , com N0 = N(0)

N(t): número de átomos radioativos
no instante t

λ: constante de desintegração (posi-
tiva, na expressão)

ou seja, N0 é o no de átomos radioativos no instante inicial da avaliação da
população de átomos radioativos.
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N0

t

N(t)

Meia-vida (intervalo ∆t para o qual 50% dos átomos radioativos se re-
compõem):

N1 = N0e
−λt; N2 = N0e

−λ(t+∆t)

⇒ N2 = N0e
−λte−λ∆t

⇒ N2 = N1e
−λ∆t ⇒ N2

N1

= e−λ∆t =
1

2

⇒ −λ∆t = ln

(
1

2

)
= −0,69315

T1/2 = ∆t =
− ln(0,5)

λ
=

0,69315

λ

λ =
ln 2

T1/2

Atividade da amostra radioativa:

A = λN ; A = λN0e
−λt = A0e

−λt

⇒ A =
A0

2t/T1/2
= A0

[
2−t/T1/2

]
OBS:

(
t

T1/2

)
: no de peŕıodo de meia-vida

Vida-média T̄ :

Seja uma fonte hipotética com atividade constante A0, até o instante T̄ ,
quando todos os átomos da amostra se desintegram ao mesmo tempo. Vida-
média é a média aritmétrica do tempo de vida dos átomos radioativos da
amostra. Por exemplo, a vida-média (T̄ ) do Iodo-131, usado na composição
de um sal para destruir células canceŕıgenas, é de 8 dias. Isto significa que em
média, cada átomo demora 8 dias para se desintegrar, ou que num conjunto
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de 8 átomos de Iodo-131, apenas 1 átomo irá se desintegrar por dia, em
média.

⇒ λIodo-131 =
1

8
dia−1; T̄ =

1

λ

Datação radioativa utilizando carbono-14

Em altitudes muito elevadas da atmosfera, nêutrons provenientes da ação de
raios cósmicos bombardeando átomos de nitrogênio-14, dão origem ao isótopo
radioativo carbono-14, o qual reage com o oxigênio do ar, produzindo CO2

radioativo. Este CO2 radioativo juntamente com o CO2 não radioativo (con-
tendo 12

6C) é absorvido pelos vegetais e ao longo da cadeia trófica, chegando
aos organismos.

Exerćıcio: Uma árvore ativa apresenta uma taxa de decaimento de carbono-
14 de 13,6 contagens por minuto por grama. Uma outra peça de madeira,
antiga do mesmo tipo de árvore, apresenta um decaimento de 3,2 contagens
por minuto, por grama. Perguntas: a) Estimar a idade da peça antiga de
madeira, considerando a meia-vida do carbono-14 como 5730 anos. b) Quan-
tas contagens por minuto, por grama seriam medidas, caso a peça antiga de
madeira, tivesse idade aproximada de 20000 anos?

Solução:

a) N = N0e
−λt

λ =
ln 2

T1/2

=
ln 2

5730
= 1,21× 10−4 por ano

N = N0e
−λt ⇒ N

N0

= e−λt ⇒ ln

(
N

N0

)
= −λt{

N0 = 13,6
N = 3,2

⇒ ln

(
3,2

13,6

)
= −(1,21× 10−4)t

−(1,21× 10−4)t = ln(0,23529)

t =
−1,4469

−1,21× 10−4
= 11958 anos

b) N = N0e
−λt

N = 13,6e−(1,2097×10−4)(20000)

N = 13,6e−2,4194 = 13,6× 0,08897

N = 1,21 decaimentos/(min/g)
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Exerćıcio: Uma peça de madeira de uma tumba antiga, contém 40% do
carbono-14 por unidade de massa que está presente em árvores ativas atuais.
Há quanto tempo (na hipótese mais próxima da atual) o objeto foi cons-
trúıdo?

OBS: usar meia-vida do carbono-14 como 5730 anos.

Solução: Após 5730 anos, o número de átomos radioativos da amostra origi-
nal cai à metade.

N = N0e
−λt

1

2
= e−λT1/2 ⇒ ln

(
1

2

)
= −λT1/2

− ln 2 = −λT1/2 ⇒ λ =
ln 2

T1/2

⇒ λ =
0,6931

5730
= 0,000120968

0,40��N0 = ��N0e
−0,000120968t

ln(0,40) = −0,000120968t
−0,91629 = −0,000120968t
t = 7574, 6 anos

t ≈ 7574 anos

6.6 Lei de Newton do Resfriamento

Considerar um corpo sem aquecimento interno com temperatura T maior do
que o meio.

Como a temperatura vai baixar em função do tempo?

T = T (t); T0 = T (0); Tr constante: é a temperatura do meio

Taxa de resfriamento: Podemos considerar:
dT

dt
= −k(T − Tr), k: condição de troca de calor

dT

dt
= −kT + kTr

T (t) = Ae−kt +
��kTr

��k

condição inicial T = T0 quando t = 0
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⇒ T0 = A+ Tr ⇒ A = T0 − Tr

⇒ T (t) = Tr + (T0 − Tr)e
−kt

Como t→∞ ⇒ 2o termo vai para zero

⇒ Tt→∞(t) = Tr

6.7 Lei de Lambert-Beer

Permite avaliar a atenuação da intensidade da luz devida à absorção por
moléculas de um determinado meio. Podemos afirmar que, para soluções
dilúıdas, o decréscimo da intensidade da luz em função da espessura do meio
absorvente é diretamente proporcional à intensidade da luz incidente (Lei de
Lambert). Sendo:

I : intensidade da luz incidente
dI : pequeno decréscimo da intensidade da luz ao passar pela distância dx

−dI

dx
∝ I =⇒ −dI

dx
= µI

⇒
∫ Il

I0

dI

I
= −µ

∫ l

0

dx

⇒ ln I
∣∣∣Il
I0
= µ l


I0 : intensidade na face

anterior do recipiente
Il : intensidade na sáıda

após trajeto de
l cent́ımetros

Il = I0e
−µ l ou, no caso geral:

I = I0e
−µx

Expressando na base de logaritmo decimais, fica:

log
I

I0
= −

(
µ

2,303

)
x

ou log
I

I0
= −µ′x , onde µ′ =

µ

2,303

A lei de Lambert acima, foi extendida por Beer, mostrando que, quando
a luz passa por uma solução com dada espessura, a fração absorvida depende
não apenas da intensidade “I”, mas também da concentração “C” da solução.
Esta é conhecida como Lei de Beer:

−dI

dx
∝ C .
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As duas leis combinadas, permitem escrever:

−dI

dx
∝ I × C ou − dI

dx
= b I C

Quando a concentração é expressa em mol·L−1, b é denominado coeficiente
de absorção molar. Passando para a base de logaritmos decimais, temos:

log
I

I0
= − b

2,303
× C × x

⇒ ⊛ log
I

I0
= −ϵ C x ,

onde ϵ = (b/2,303) é denominado coeficiente de extinção molar, expresso
em L·m−1·cm−1. A expressão ⊛ é denominada usualmente “Lei de Beer-
Lambert” ou “Lei de Lambert-Beer”.

Fórmulas associadas

log10
I0
I

= ϵ l C

(
ou log10

I

I0
= −ϵ l C

)
ϵ =

A

l C

A = ϵ l C; A = ϵ C (se l = 1 cm)

T =
I

I0
= 10−ϵ l C

∣∣∣ %T = 100× I

I0

A = log10
1

T
= − log10 T = log10

I0
I

= ϵ l C

I0 : Intensidade da luz

incidente na face

anterior da amostra

I : Intensidade da luz

transmitida

ϵ : Coeficiente de

absorção (extinsão)

molar, em L·mol−1·cm−1

C : Concentração em

mol·L−1

l : Comprimento do

caminho da luz na

solução absorvente

A : Absorbância

T : Transmitância

Exemplos:

1) Qual a absorbância de uma solução que possui uma transmitância de
20% em um dado comprimento de onda?

Solução:

%T = 20 ⇒ T =
20

100
= 0,2
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A = − log10 T = − log10 0,2 = −(−0,699) = 0,699

2) Se a dissolução no exerćıcio anterior consistir de espécie com concen-
tração de 2,30× 10−4 M, e considerando uma célula de análise de 2 cm
de espessura, qual deverá ser a concentração da solução para se obter
uma transmitância de 8%?

Solução:

ϵ = − log10 T

l C

M = mol · L−1

(molaridade)

= − log 0,2

2 cm× 2,3× 10−4 M

=

(
0,699

2× 2,3× 10−4

)
= 0,1520× 104

= 1520 Mol−1 · cm−1

A = − log10 T = ϵ l C

C = − log10 T

ϵ l
=

− log10
(

8
100

)
1520 M−1 · cm−1 × 2 cm

=
− log10(0,08)

1520M× 2

C =
1,0969

3040
M = 3,6× 10−4M

3) Um dado composto apresenta absorbância máxima a 275 nm, de ϵ275 =
8400M−1·cm−1, sendo a largura da cubeta do espectrofotômetro de
1 cm. Neste comprimento de onda, foi medida uma absorbância de
A275 = 0,70. Qual a concentração do composto acelerado?

Solução:

A = ϵ l C ; 0,70 = (8400M−1 · cm−1)× (1cm)× C

C = 8,33× 10−5 Mol·L−1

4) Seja uma solução contendo uma substância na concentração de 4 mol·L−1.
Considerando uma largura de cubeta do espectrofotômetro de 2 cm e o
fato do que 50% da luz incidente seja transmitida, calcule o coeficiente
de absorção (ϵ).

Solução:
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Pela Lei de Beer-Lambert:

log10
I

I0
= − log10

(
0,5

1,0

)
= A = 8ϵ ⇒ ϵ = 0,03 M−1·cm−1

5) No exemplo anterior, quanto do feixe é transmitido quando a concen-
tração vale 8 mol·L−1?

Solução:

log10

(
I0
I

)
= ϵ l C

log10(1)− log10(I) = 0− log10(I) = 0,0376× 8× 2 = 0,6016

⇒ Itransmitido = 0,2503 ≈ 25%

6.8 Reações Qúımicas

Imaginemos uma reação do tipo: A + B C + D, iniciando com os rea-
gentes A e B, para a qual a velocidade do desaparecimento de A é proporci-
onal à concentração de A em cada instante. Neste caso, podemos escrever:

−d[A]

dt
∝ [A]

Se isto ocorrer também para B, de forma independente de [C] e [D], fica:

−d[A]

dt
∝ [A][B] =⇒ −d[A]

dt
= k[A][B] ,

onde a constante de proporcionalidade k é a constante de velocidade, e a
equação acima, a equação de velocidade. A constante k é independente da
concentração de A e B, mas depende da temperatura.

Ordem da reação:

A ordem da reação relativamente a uma dada espécie qúımica, é dada pelo
expoente da concentração da espécie na equação.

Ex.:

−d[X]

dt
= k[X][Y]2

1a ordem em relação a X

2a ordem em relação a Y

3a ordem global
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A reação A + B C + D, como indicado acima, é uma reação de 1a ordem
em relação a A e B.

Seja uma reação do tipo A produtos, de 1a ordem, representada
pela equação:

−d[A]

dt
= k[A] ⇒ d[A]

[A]
= −k dt

=⇒ ln[A] = −k t+ ln[A]0 (∗)1
ou

[A] = [A]0e
−k t (∗)2

A representação de (∗)1 em um gráfico semilogaŕıtmico, leva a uma reta, com
inclinação tg x = −k, pois

ln[A]︸ ︷︷ ︸
y

= −k t︸︷︷︸
a x

+ ln[A]0︸ ︷︷ ︸
b

α

tgα = −kln[A]0

ln[A]

t

Gráfico de ∗ 1

k = −
d[A]
dt

[A]

[A] = [A]0e−k t[A]0

[A]

t

Gráfico de ∗ 2
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Meia-vida:

A meia-vida de uma reação, corresponde ao tempo necessário para que a
concentração do reagente caia à metade do seu valor inicial.

Usando ∗ 1 ⇒ ln[A] = −k t1/2 + ln[A]0

k t1/2 = ln[A]0 − ln[A]1/2

k t1/2 =
ln[A]0
[A]1/2

⇒ k t1/2 =
ln[A]0
1
2
[A]0

= ln 2

=⇒ t1/2 =
ln 2

k
=

0,653

k

Exerćıcio:

1) Escreva a equação da velocidade e determine o valor da constante de
velocidade para a decomposição térmica da fosfina a 680oC.

4PH3(g) P4(g) + 6H2(g)

Dados:

– velocidade inicial da reação: 1,98 × 10−4 mol·L−1·s−1 para [PH3]
inicial de 1,00× 10−2 mol·L−1;

– velocidade inicial de 8,91×10−4 mol·L−1·s−1, quando [PH3] inicial
for de 4,5× 10−2 mol·L−1.

Solução:

PH3 (mol/L) velocidade (mol·L−1·s−1)
1,00× 10−2 1,98× 10−4

4,50× 10−2 8,91× 10−4

Para verificar a ordem da reação:

4,50× 10−2

1,00× 10−2
= 4,50× 10−2

8,91× 10−4

1,98× 10−4
= 4,50× 10−2

 ⇒ 1a ordem

Equação:
d[PH3]

dt
= −k[PH3]

−k =
d[PH3]/dt

PH3

=
1,98× 10−4

1,00× 10−2
= 1,98× 10−2 mol·L−1·s−1
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6.9 Equação fundamental da Hidrostática

Para um fluido incompresśıvel podemos considerar ρ = cte.

dp

dz
+ ρ g = 0

dp = −ρ g dz∫ p2

p1

dp = −ρ g
∫ z2

z1

dz

p2 − p1 = −ρ g(z2 − z1)

∆p = −ρ g∆z (eixo orientado para cima)

∆p = ρ g∆z (eixo orientado para baixo)

p: pressão
z: posição no eixo vertical
ρ: densidade do fluido
g: aceleração da gravidade

x

z

fluido

A diferença de pressão entre dois pontos num fluido em equiĺıbrio, é nu-
mericamente igual ao peso de uma coluna de ĺıquido de seção reta igual à
unidade de área e altura igual à distância entre os dois planos isobáricos que
passam pelos pontos.

Esta equação também pode ser aplicada à variação de pressão em gases,
como na atmosfera.

Exemplo: Variação da pressão atmosférica com a altitude. Vamos considerar
como aproximação a temperatura constante.

Solução:

dp

dz
+ ρ z = 0 , considerando o eixo z apontando para cima.

Dividindo ambos os membros da igualdade por p, fica:

1

p

dp

dz
+

ρ

p
g = 0 ; Fazer k =

ρ

p

1

p

dp

dz
+ k g = 0

dp

p
= −k g dz

ln p = −k g z + c

p = Ae−kgz ; A = p0

⇒ p = p0e
−kgz

OBS:
ρ

p
=

m

pV

← massa
← volume

↑
pressão

⇒ ρ

p
= cte, pois:

m = cte, pV = cte em função da
aproximação inicial T = cte
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Exemplo prático: a 20oC, 1L de ar tem massa ≈ 1,3g; pressão normal ≈
1,0× 105 N/m2.

⇒ p

p0
= e−1,3×10−4z =⇒ kar = 1,3× 10−5 kg/N·m

⇒ p

p0
= e−z/2,7; com z em km.

2 4 6 8 10 12 14 16 18 20
10−2

10−1

100

z

lo
g

p p
0

6.10 Ĺıquidos em rotação

z

ĺıquido

α

mω2x mg

−→
E

Força

centŕıpeta

x

z

tgα =
mω2x

mg
=

ω2x

g
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Seja a equação da meridiana (seção da superf́ıcie por qualquer plano que
passe pelo eixo de simetria):

dz

dr
= tgα =

ω2x

g

⇒
∫

dz =
ω2

g

∫
x dx

z =
ω2x2

2g
+ c

z =
1

2

ω2

g
x2

−→
E : resultante das forças de superf́ıcie é ⊥
à superf́ıcie livre (isóbara)

Peso (mg): vertical

Resultante (mω2x): Força centŕıpeta =
−→
E +

−→
P

OBS: A meridiana é uma parábola.

6.11 Módulo de Elasticidade e Módulo de Re-

siliência

Na caracterização mecânica dos materiais e biomateriais, o “ensaio de tração”,
quando posśıvel, é um dos mais importantes.

Seja uma barra metálica ciĺındrica, como a da figura abaixo, presa em
uma das extremidades com seção transversal de área S0, onde está marcada
uma distância L0, como indicado.

L0

Q

S0

visão lateral
da barra

visão frontal
da barra

Q: Força de Tração

S0: Área da seção transversal

L0: Distância de referência

ϵ =
∆L

L0

: Deformação

∆L: Acréscimo devido à força Q

σ =
Q

S0

: Tensão =
Força

Área

A tensão média na barra é dada por σ = Q/S0, e sua aplicação causa
aumento de ∆L na distância original L0. A deformação média será σ =
∆L/L0.

A tensão σ corresponde à grandeza Força/Área, enquanto ϵ é adimensio-
nal.

Para um corpo de prova metálico, é posśıvel obter um gráfico Tensão ×
Deformação, que dá diversas informações sobre as propriedades do material,
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em particular o “módulo de elasticidades” E = σ/ϵ ou “módulo de Young”.
N = ińıcio do ensaio de tração, o traçado é linear, sendo E = σ/ϵ, o

coeficiente angular da reta.
A linearidade do diagrama termine num ponto denominado “limite elástico”

(A). Tentos acima deste valor causam deformações permanentes. Em sequência
ao ponto A obtém-se o ponto A′, denominado “limite da proporcionalidade”.

Terminada a “zona elástica” atinge-se a “zona plástica”. Não há mais
proporcionalidade entre tensão e deformação.

Limite de resistência: σr =
Qr

S0

, Qr: carga máxima atingida durante o ensaio.

Após esta fase, (atingida Qr) entra-se na fase de ruptura material.

Módulo de Elasticidade “E”

“E” é constante para cada metal ou liga metálica. Módulo de elasticidade é
a medida da regidez do material.

A

B

ϵA

ϵB

σ

A B

EA = σ
ϵA

EB = σ
ϵB

Deformação ϵ

T
en
sã
o
σ

ϵA < ϵB

EA > EB

Comparação entre a rigidez de dois materiais
(A e B).

OBS: E ∝ 1

T
; o módulo da elasticidade varia

inversamente com a temperatura.

Resiliência

Resiliência é a capacidade de um metal em absorver energia quando defor-
mada elasticamente, e liberá-la quando descarregado. Sua medida é feita
pelo “módulo de resiliência” = Energia de deformação por unidade de vo-
lume, necessária para tensionar o material da origem até a tensão do limite
de proporcionalidade.

Modelo de Resiliência

Ur = O trabalho exercido para tensionar até o limite de proporcionalidade.
É igual à tensão média multiplicada pela deformação ϵp causada.

Ur =
σp

2
· ϵp =

σp

2
· σp

E︸︷︷︸
E=

σp
ϵp

, σp : limite de proporcionalidade
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Ur =
σ2
p

2E

O módulo de resiliência pode também ser obtido considerado a parte
elástica do diagrama tensão-deformação. Tensionando o espécime do ponto
p ao ponto p′, o trabalho executado é σ dϵ.

Ur =

∫ ϵp

0

σϵ dϵ =

∫ ϵp

0

Eϵ dϵ = E

[
ϵ2

2

]ϵp
0

= E
ϵ2p
2

Ur =

(
E

2

)(
σ2
p

E2

)
=

σ2
p

2E

dϵ

ϵ

ϵp

σ

σp
σe

P

P ′

A

A′

B B′

Deformação ϵ

T
en
sã
o
σ

Exerćıcio: Mostre que a grandeza de Ur pode ser: Energia/Volume.

6.12 Equação de van der Waals e o ponto

cŕıtico de um gás

Diversas equações procuram modelar o comportamento de gases reais, dentre
as quais, a equação de van der Waals, se destaca. Diferente da equação dos
“gases perfeitos” ou “gases ideais” (pV = nRT ou p = nRT/V ), a equação
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de van der Waals leva em consideração o volume ocupado pelas moléculas
do gás e suas propriedades espećıficas quanto às interações intermoleculares
e consequências na pressão final do gás, num dado recipiente.

Equação de van der Waals

p =
nRT

V − nb
− a

( n
V

)2
Equação em função do volume molar

(Vm = V/n):

p =
RT

Vm − b
− a

V 2
m

p: pressão do gás
V : volume do recipiente
n: no de mols
R: constante dos gases
T : temperatura absoluta
a, b: constantes de van
der Waals, caracteŕısticas de
cada gás

Vm =
V

n
: volume molar

OBS:

1) Verifique que, quando Vm alto, a expressão tende para a dos gases
perfeitos (p = nRT/V ) pois Vm − b ≈ Vm e a/V 2

m → 0.

2) Para substâncias puras, a isoterma cŕıtica (diagramas p×V ) apresenta
um ponto de inflexão, o que significa que a 1a e a 2a derivadas de p em
relação a Vm, a T constante (isoterma cŕıtica) neste ponto são nulas.
Escreve-se: (

∂p

∂Vm

)
T

= 0 ;

(
∂2p

∂V 2
m

)
T

= 0

Então, para calcular pc, Vc e Tc (cŕıtico) temos a equação original e
outras duas novas equações.

Esta condição f́ısica é fundamental para uma aplicação biológica: a se-
cagem de uma amostra biológica para posterior observação por microscopia
eletrônica de varredura (MEV), com máxima deformação do material origi-
nal. Pelo fato do material biológico ser rico em água, e a tensão superficial da
água ser relativamente alta, o “método do ponto cŕıtico” é de fundamental
importância para análise de células e tecidos.

Exerćıcios:

1) Obter a expressão da equação de van der Waals em função do volume
molar (Vm) e discutir as condições que levam ao comportamento do gás
perfeito.
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Solução:

Equação original p =
nRT

V − nb
− a

( n
V

)2
Dividir os numeradores e denominadores do 1o e 2o termos à direita da
igualdade por n. Fica:

p =
nRT
n

V−nb
n

− a

(
n
n
V
n

)2

; com
V

n
= Vm

À temperatura elevadas e volumes molares grandes ≈ gás perfeito

p =
RT

Vm − b
− a

1

(Vm)2

2) Obter os valores de p, V e T para o ponto cŕıtico, usando a expressão
de van der Waals (use a expressão em função de Vm).

Considerando que temos uma função de várias variáveis, e que o ponto
cŕıtico é um ponto de inflexão na curva p× V , devem ser utilizadas as
seguintes 3 equações:

p =
RT

Vm − b
− a

1

V 2
m

,

(
∂p

∂Vm

)
T

= 0 e

(
∂2p

∂V 2
m

)
T

= 0.

Solução:

O ponto de inflexão implica
∂p

∂Vm

= 0 e
∂2p

∂V 2
m

= 0.

Cálculo das derivadas:(
∂p

∂Vm

)
T

= − RT

(Vm − b)2
− a(−2V −3

m ) = − RT

(Vm − b)2
+

2a

V 3
m(

∂2p

∂V 2
m

)
T

= −RT (−2)(Vm − b)−3 − 6aV −4
m =

2RT

(Vm − b)3
− 6a

V 4
m(

∂p

∂Vm

)
T

= 0(
∂2p

∂V 2
m

)
T

= 0


− RT

(Vm − b)2
+

2a

V 3
m

= 0 ← × 3

Vm

e soma as duas

expressões

2RT

(Vm − b)3
− 6a

V 4
m

= 0

− 3RTc

Vc(Vc − b)
+

2RTc

(Vc − b)3
+ 0 = 0

⇒ 2���RTc

(Vc − b)A3
=

3���RTc

Vc
XXXXX(Vc − b)2

⇒ 2

Vc − b
=

3

Vc

⇒ 2Vc = 3Vc − 3b
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⇒ Vc = 3b

OBS: Tc: temperatura cŕıtica

Vc: volume cŕıtico

Usando este valor de Vc na equação ∂p/∂Vm = 0, para encontrar Tc,
fica:

− RTc

(Vc − b)2
+

2a

V 3
c

= 0 ⇒ − RTc

(3b− b)2
+

2a

(3b)3
= 0

−RTc

4��b2
+

2a

27b�3
= 0 ⇒ Tc =

8a

27Rb

Para encontrar a pressão cŕıtica (pc), voltamos à expressão original:

pc =
RTc

Vc − b
− a

Vc

, com Vc = 3b e Tc =
8a

27Rb

pc =
��R × 8a

27�R b

3b− b
− a

9b2

⇒ pc =
8a

27b× 2b
− a

9b2

⇒ pc =
4
A8a

27× A2b2
− a

9b2

pc =
4a

27b2
− a

9b2

pc =
4a− 3a

27b2
=

a

27b2

6.13 Reações de Segunda Ordem

Seja a reação A+2B produto, cujos dados de concentração e velocidades
de reação para cada componente, estão informados na tabela:

No do [A] inicial, [B] inicial, Velocidade inicial

experimento mol·L−1 mol·L−1 −d[A]

dt
, mol·L−1·s−1

1 0,246 0,269 0,122
2 0,492 0,269 0,488
3 0,246 0,538 0,122

Seja determinar a ordem de reação para os reagentes A e B.
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OBS: [A] : concentração do reagente A em mol·L−1;

[B] : concentração do reagente B em mol·L−1;

−d[A]

dt
: velocidade de A, em mol·L−1·s−1

Solução: Ordem para A:

Variação de A:
[A]2
[A]1

=
0,492

0,246
= 2

Variação de −d[A]

dt
:

(
−d[A]

dt

)
2(

−d[A]
dt

)
1

=
0,488

0,122
= 4

Considerando que a concentração de A dobrou, enquanto que a velocidade
correspondente quadriplicou, conclúımos que a reação é de ordem 2, o que
leva à equação de velocidade:

−d[A]

dt
= k[A]2

Resolvendo a equação diferencial (por separação de variáveis), temos:

−
∫

d[A]

[A]2
=

∫
k dt; condição inicial [A] = [A]0 em t = 0

1

[A]
= kt+ c ⇒ t = 0 ⇒ [A] = [A]0 ⇒

1

[A]
= kt+

1

[A]0

Para esta expressão, podemos plotar uma reta, com t como abscissa e 1/[A]
como ordenada, o que pode ser prático, experimentalmente, e uma carac-
teŕıstica espećıfica para reações de 2a ordem.
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Isolando [A] obtemos a expressão cartesiana para [A] em função de t.

1

[A]
= kt+

1

[A]0
; fazendo [A] = y

1

y
= kt+ c ⇒ 1 = kty + cy

⇒ 1 = y(kt+ c) ⇒ y =
1

kt+ c

Para t = 0, temos y0 =
1

c
⇒ c =

1

y0

⇒ y =
1

kt+ 1
y0

⇒ [A] =
1

kt+ 1
[A]0

Exerćıcio 2: Seja uma reação do tipo 2A + B C + 3D, cujos dados de
velocidade iniciais são dados na tabela:

[A]inicial mol·L−1 [B]inicial mol·L−1

(
−d[A]

dt

)
inicial

mol·L−1·s−1

0,127 0,346 1,64× 10−6

0,254 0,346 3,28× 10−6

0,254 0,692 1,31× 10−5

Perguntas:
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a) Qual a equação de velocidade (−d[A]/dt) da reação?
b) Qual o valor da constante de velocidade?
c) Qual a velocidade de consumo de A, quando [A] = 0,100 mol·L−1 e [B] =
0,200 mol·L−1?

Solução:

a)
[A]2
[A]1

=
0,254

0 127
= 2;

(
−d[A]

dt

)
2(

−d[A]
dt

)
1

= 2

⇒ grau 1 para A

[B]2
[B]1

=
0,692

0 346
= 2;

(
−d[B]

dt

)
3(

−d[B]
dt

)
2

= 4

⇒ grau 2 para B

⇒ Equação: −d[A]

dt
= k[A][B]2

b) Valor da constante de velocidade

k =
−d[A]

dt

[A][B]2
=

1,64× 10−6

0,127× (0,346)2
= 1,08× 10−4 (mol · L−1)2s−1

ou

k =
3,28× 10−6

0,254× (0,346)2
= 1,08× 10−4(mol · L−1)2s−1

ou

k =
1,31× 10−5

0,254× (0,692)2
= 1,08× 10−4(mol · L−1)2s−1

c)

(
−d[A]

dt

)
[A] = 0,100

[B] = 0,200

= 1,08× 10−4 × 0,1× (0,2)2 = 1,08× 10−5 × 0,04

⇒
(
−d[A]

dt

)
[A] = 0,100

[B] = 0,200

= 4,32× 10−7mol · L−1 · s−1
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6.14 Exerćıcios

1) Um nucĺıdeo radioativo é fabricado numa razão de 8 nucĺıdeos por
segundo, mas ao mesmo tempo, o nucĺıdeo se desintegra em função de
N , onde N é o número de núcleos presentes em cada instante. Escreva
a equação diferencial deste problema e resolva a equação. Considere
a situação onde o número de núcleos do nucĺıdeo a ser produzido no
instante inicial, seja zero. Desenhe o gráfico de N em função de t.

Solução:

dN

dt
= g − kN ⇒ dN

dt
= g

(
1− k

g
N

)
;
k

g
= p

⇒ dN

dt
= g(1− pN) ⇒ dN

1− pN
= g dt

⇒ − ln |1− pN | = gt+ c

ln |1− pN | = −gt+ c′

1− pN = Ae−gt

pN = 1− Ae−gt

⇒ N =
1

p
(1− Ae−gt) ⇒ N =

g

k
(1− Ae−gt)

condição inicial: N(0) = 0 ⇒ 0 =
g

k
(1− A)

⇒ A
g

k
=

g

k
⇒ A = 1

⇒ N(t) =
g

k
(1− e−gt)

g
k

t

N(t)

{
t = 0 ⇒ N(0) = 0

t→∞ ⇒ N∞ =
g

k

2) Variação do número de indiv́ıduos de uma população, em função da
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taxa de natalidade, taxa de mortalidade e imigração.

Escreva uma equação diferencial (e apresente uma solução) que re-
presente um processo de nascimento, morte e o efeito de imigração.
Considere N(0) = N0.

Solução:

dN

dt
= λN − µN + ν;

com λ > 0; µ > 0: ν > 0

dN

dt
= (λ− µ)N + ν

OBS: Equação do tipo mostrado no box à
direita; y′ = ay + b

⇒ N(t) = ce(λ−µ)t − ν

λ− µ

Como N(0) = N0, a solução particular fica:

N0 = c− ν

λ− µ
⇒ c = N0 +

ν

λ− µ

⇒ N(t) =

(
N0 +

ν

λ− µ

)
e(λ−µ)t − ν

λ− µ

⇒ N(t) = N0e
(λ−µ)t +

ν

λ− µ
(e(λ−µ)t − 1)

N(0): no de indiv́ıduos no ins-

tante t

λ: taxa de natalidade

µ: taxa de mortalidade

ν: termo relacionado à imigração

(independente de N(t))

dy

dt
= ay + b; com a ̸= 0

dy

dt
= a(y + k)

dy = a(y + k)dt

dy

y + k
= a dt

ln |y + k| = at+ C

y + k = ±eat+C = ceat, com
c = ±eC

⇒ y = ceat − b

a

Comentários:

– Caso a taxa de mortalidade seja maior do que a de mortalidade (λ >
µ), a população crescerá. Em caso contrário, a população decresce.

– Caso λ = µ, a população se manterá estável.
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λ > µ

λ = µ

λ < µ

t

N(t)

3) Lei de resfriamento de Newton

Isaac Newton desenvolveu uma fórmula para calcular a temperatura
de um material à medida que perde calor. Seja um corpo sem aqueci-
mento intenso, com temperatura mais elevada do que a sua vizinhança,
considerado como um reservatório de calor, ou seja, cuja temperatura
é mantida, enquanto o corpo original se resfria.

Qual a equação diferencial que representa a variação da temperatura
do corpo em função do tempo? Condição inicial T (0) = T0.

Solução:

dT

dt
= −k(T − Tviz)

dT

(T − Tviz)
= −k dt

ln(T − Tviz) = −kt+ C

T − Tviz = e−kt+C

(∗) T = ce−kt + Tviz

condição inicial T (0) = T0

⇒ T0 = c+ Tviz ⇒ c = T0 − Tviz

em (∗) fica:
⇒ T (t) = (T0 − Tviz)e

−kt + Tviz

⇒ T (t) = Tviz + (T0 − Tviz)e
−kt

T : temperatura

t: tempo

k: constante dependente da troca de calor

Tviz: temperatura da vizinhança, mantida

constante

Comentários:

t = 0 ⇒ T (0) = ���Tviz + T0 −���Tviz = T0
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t→∞ ⇒ T = Tviz

t

T (t)
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Apêndice A

Tabelas

f(x) f ′(x)

a (a constante) 0

xn nxn−1 (n inteiro ̸= 0)

ex ex

ax ax ln a (a > 0)

lnx
1

x
(x > 0)

loga x
1

x ln a
(x > 0)

senx cosx

cosx − senx

tg x sec2 x

secx secx tg x

cossecx − cossecx cotg x

cotg x − cossec2x

arcsenx
1√

1− x2
(|x| < 1)

arccosx
−1√
1− x2

(|x| < 1)

arctg x
1

1 + x2

arcsecx
1

|x|
√
x2 − 1

arccscx
−1

|x|
√
x2 − 1

arccotx
−1

1 + x2
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f(x)

∫
f(x) dx

a, a constante ax+ c (c constante)

xn xn+1

n+ 1
+ c (n inteiro ̸= −1)

x−1 ln |x|+ c

ex ex + c

ax
ax

ln a
+ c (a > 0 e a ̸= 1)

senx − cosx+ c

cosx senx+ c

tg x ln | secx|+ c

cotg x ln | senx|+ c

sec2 x tg x+ c

cossec2x − cotg x+ c

secx tg x secx+ c

cossecx cotg x − cossecx+ c

1√
1− x2

arcsenx+ c

−1√
1− x2

arccosx+ c

1

1 + x2
arctg x+ c

−1
1 + x2

arccotx+ c

1

|x|
√
x2 − 1

arcsecx+ c

−1
|x|
√
x2 − 1

arccscx+ c
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